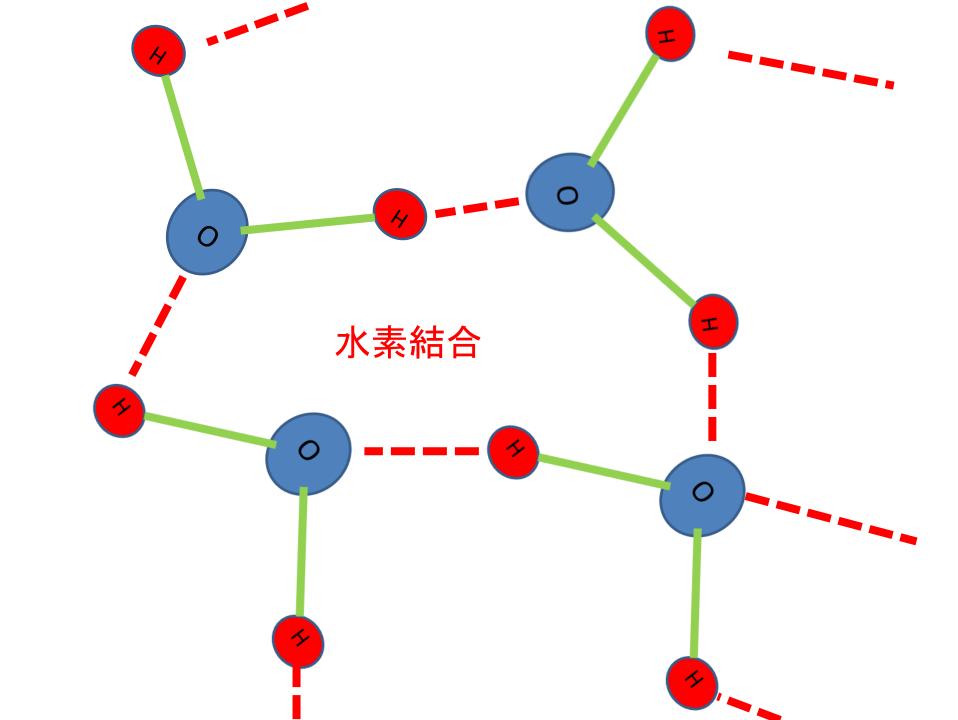

- 137億年前 宇宙誕生
 - 83億年前 銀河系形成
 - 50億年前 太陽誕生 (第二世代の恒星)
 - 46億年前 地球誕生 (微惑星の衝突・合体)


衝突しながら大きくなり高温化・原始大気の誕生衝突が収まると冷却し、雨が地上に到達する。 千年足らずで海ができる(水を持つ星の誕生)

地球が水を持つ星になれた条件

水の特性 太陽からの距離 地球の大きさ

1. 水の性質

極性と水素結合のために 分子間力が強い

	分子量	沸点	凝固点	昇華点
水 H ₂ O	18	100°C	0°C	
窒素(N ₂)	28	-196°C		
酸素 (O ₂)	32	-183°C	-219°C	
二酸化炭素(CO ₂)	44			-79°C

水に水素結合の力がなければ 沸点 -90℃ 凝固点-110℃ 以下 つまり、常温で水は存在しない。 極性のために イオン結合を壊して溶かす 水素結合のために糖なども溶かす いろいろな物の溶媒として優れている

-4°Cで最大の密度となる 氷は水よりも軽い。 表面に氷がうく

比熱が大きい (温度変化が小さい)

粘性が高い 沈みにくい

表1-2 空気と比較した媒質としての水の特徴 (20℃)

特性	水	空気	水中での生物への影響
密度	$\sim 1 \mathrm{g/cm^3}$	水の1/800程度	生物体が「浮き」やすい
定圧比熱容量	$\sim 4.18 J/k/g$	水の約1/4	水温が安定, 貯熱
粘性	$1.002 \times 10^3 Pa s$	水より2桁小さい	摩擦の効果で沈みにくい
光吸収	大きい	小さい	深度とともに急激に減衰
酸素濃度	$6 \sim 8 \text{ mg/l}$	0.2 気圧	酸素欠乏になりやすい
音	\sim 1,500 m/s	\sim 340 m/s	シグナル伝達
相	3 相	単相	水温の安定に寄与

表1-1 水圏における水の分布と平均滞留時間

場所	水量(10 ³ km ²)	百分率(%)	平均滞留時間
海洋	1,338,000	97	3,700年
極域万年氷・氷河	24,100	1.7	16,000年
地下水	23,400	1.7	300年
淡水湖	91	0.007	10~100年
塩水湖	85	0.006	10~10,000年
土壤水分	16.5	0.001	280 日
大気	12.9	0.001	9日
河川	2.12	0.0002	12~20 日

Gleick (1996) などから作成

惑星の比較

	金星	地球	火星
平均公転半径	108,208,930,km	149,597,871km	227,936,640km
太陽光の照射	2,660W/m ²	1,370W/m ²	590W/m ²
アルベド(反射率	5) 0.65	0.37	0.15
平均表面温度	400°C	15°C	-53° C
質量	$4.869X10^{24}kg$	5.9736X10 ²⁴ kg	0.64196X10 ²⁴ kg
	大気あり	大気あり	大気希薄

アルベドは地表面の状態により変化する。

137億年前 宇宙誕生 83億年前 銀河系形成 50億年前 太陽誕生 (第二世代の恒星) 46億年前 地球誕生 (微惑星の衝突・合体) 38億年前 生命の誕生 だがその前に材料はどうしたんだ 生命の定義を満たすための材料 タンパク質(酵素や運動機関) 脂質(膜の材料)

核酸(遺伝子)

そのメカニズムはまだよく分からない 私が知っている論争

水蒸気・メタン・アンモニア・水素の混合気(原始大気)を循環させて バシバシ放電するとアミノ酸ができる(アミノ酸は地球上で化学合成された。) 反論:原始大気は還元的ではなかった。宇宙にもアミノ酸は存在し、 宇宙ではD-アミノ酸は壊れやすい (アミノ酸は宇宙から来た。)

タンパク質が先か、DNAが先か、RNAが先か タンパク質は自己複製能力がない DNAは触媒作用がない RNAは不安定

最初の生物は独立栄養か従属栄養か 化学進化説では従属栄養 表面代謝説では独立栄養 光合成はできないが 還元的状態での化学合成ならばできる 黄鉄鉱表面でのギ酸の生成は発エルゴン反応 FeS+H₂S+CO2→FeS₂+H₂O+HCOOH -11.7kj/mol 海底熱水孔が生命誕生の場か? 大きい方から累代 (Eon), 代(Era), 紀(Period),世(Epoch) 累代は4つ

冥王代(地球誕生から40億年前まで) 地殻や海の形成、化学進化 始生代(生物の祖先が現れた時代) 40億年から25億年 原核生物

古細菌・真性細菌・シアノバクテリア 原生代(大気中に酸素がたまり、オゾン層ができて 地表に届く紫外線量が低下) 25億年前から5億4200万年前 原核生物が他の原核生物を取り込み

> 真核生物が誕生、 後期には多細胞生物出現

顕生代(目に見える大きさの多細胞生物の出現 5億4200万年前から~現在まで)

顕生代の初めがカンブリア紀でそれ以前が先カンブリア紀

冥王代、始生代、原生代も細かく代に分けられているが ここでは無視(というか知らない) 顕生代は古生代、中世代、新生代に分けられる。

- 古生代 無脊椎動物の出現から恐竜の繁栄まで 5億4200万年前から2億5100万年前まで 種子植物(裸子植物)出現
- 中生代 恐竜が繁栄し絶滅する 2億5100年前から6550万年前まで 古い方から三畳紀、ジュラ紀、白亜紀に分かれる 被子植物が出現した
- 新生代 哺乳類と鳥類の繁栄で特徴づけられる。 6550万年前から現在まで

新生代は、パレオジン紀、ネオジン紀、第四紀の3つにわける 3つに分けるのかはあまりに専門的な議論で分からない

第四紀という区分は、人類が出現した時代という区分になっている。

第四紀は

更新世

氷河期をくりかえしていた時代 258万8千年前から1万1700年前

完新世

最後の氷河期の終わりから現在 1万1700年前から現在

生物学的に整理すると

生命の誕生(古細菌と真性細菌の出現) 38億年前 光合成する生物の出現 (シアノバクテリア) 32億年前 大気に酸素が増える、オゾン層の出現 最古の氷期[現在知られている.) 24~22億年前 ヒューロニアン氷河期 スノーボールアース仮説 真核生物の出現 21億年前 核・ミトコンドリア・色素体・中心体等を持つ生物 単細胞のものは原生生物 緑藻(緑色植物亜界) 緑色植物亜界 緑藻・コケ植物・シダ植物・裸子植物・被子植物 光合成色素 Chlorophyll a, b

細胞壁:主としてセルロース

蓄積する物質 デンプン

用語説明 緑色植物亜界

コケ植物 シダ植物 車軸藻 裸子植物 被子植物 緑藻 種子植物 維管束植物 陸上植物

光合成

明反応: 光エネルギーを使って水を還元し、

高エネルギー物質を作る

暗反応: 高エネルギー物質を使って有機物を作る

維管束

茎の中を走る柱状の組織 物質の運搬(師管・導管) 機械的支持(繊維)

形成層:師部・木部の違い

水・栄養の吸収機関(根)と光合成の機関(葉)

が垂直的に離れている。

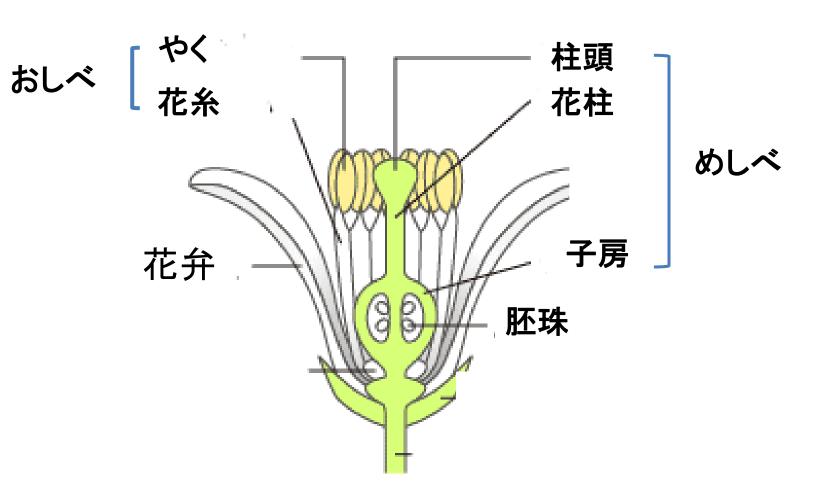
植物学的に整理すると

生命の誕生(古細菌と真性細菌の出現) 38億年前

光合成する生物の出現 (シアノバクテリア) 32億年前

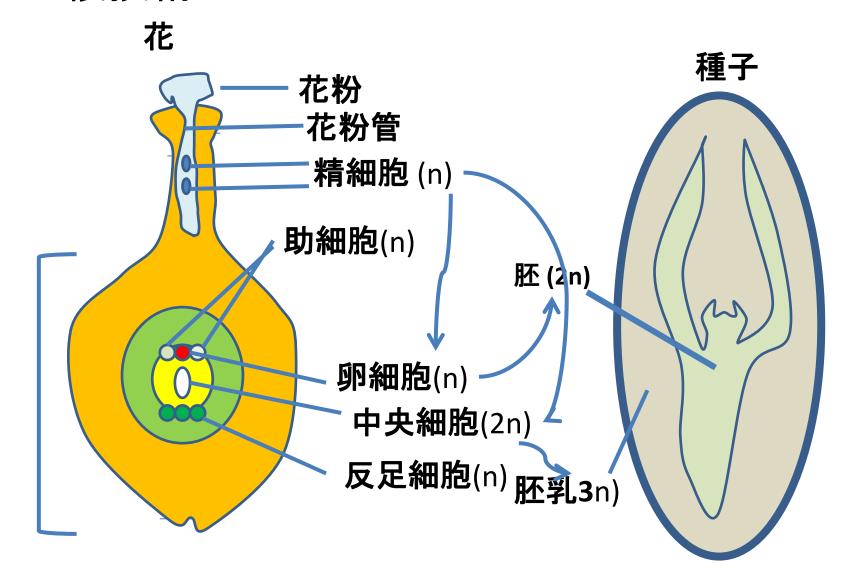
真核生物の出現 21億年前

多細胞生物の出現 10~6億年前


植物の陸上進出 4億2000年前

種子植物の出現 古生代中期

被子植物の出現・・・・中生代


ジュラ紀または3畳紀(2億5100万~

1億4550万年前)

被子植物 胚殊(種)が子房にくるまれている

重複授精

子房

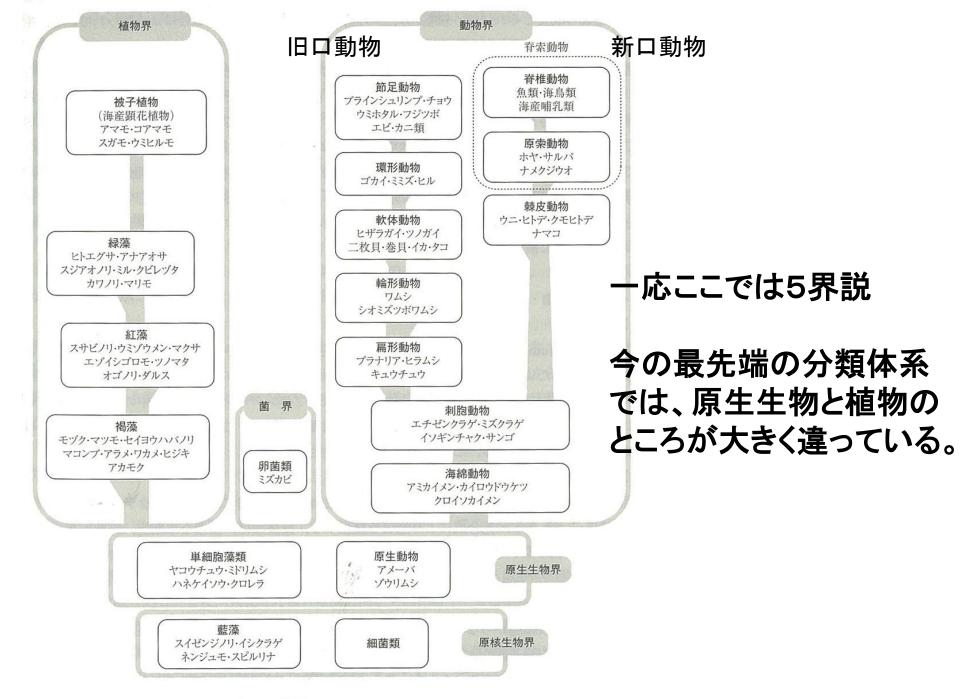


図2-1 五界説に基づく水圏生物の分類

- 38く年前 生命 嫌気環境の中で化学合成独立栄養生物として誕生
- 27億年前 光合成をする**シアノバクテリア**(**藍藻**)誕生
- 21億年前 単細胞生物が他の生物を取り込み共生
- 10億年前 多細胞生物の出現 (単細胞生物の接合)
- 6-5億年前 スノーボールアース 冷却化 原生生物の大量絶滅 その後 大型多細胞生物の出現 エディアカラ生物
- 5.7-5.1億年前 エイディアカラ生物絶滅
- 5..42-5.3億年前 カンブリア爆発 ほとんどすべての動物門出現(海中) 進化の実験
- 5.1-4.4億年前 オルドビス紀 魚類出現
- 4.9-3.7億年前 デボン起 魚類の大繁栄 (硬骨魚の出現) 後期に四肢動物出現、陸上への進出始まる。

動物学的に整理すると

生命の誕生(古細菌と真性細菌の出現) 38億年前

光合成する生物の出現的に整理 (シアのバクテリア) 32億年前

真核生物の出現 21億年前

多細胞生物の出現 10~6億年前

原生生物の大量絶滅 6~5億年前

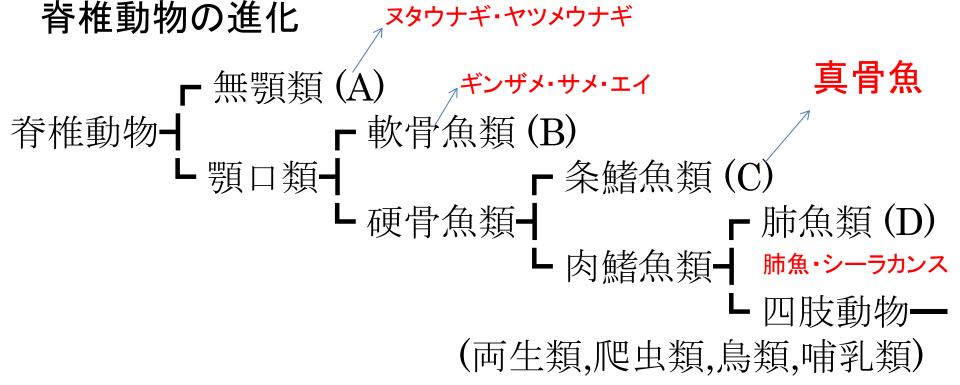
(スノーボールアース仮説)

その後、大型多細胞生物出現(エディアカラ生物)

エディアカラ生物絶滅 5.7~5.1億年前

カンブリア爆発 5.4~4.9億年前

ほとんどの動物門が出現


魚類の出現(オルドビュス紀) 4.9~4.4億年前

魚類の大繁栄(デュボン紀) 4.2~3.6億年前

両生類の出現、動物の陸上進出 3.6億年前

爬虫類の出現 3億年前

哺乳類の出現 2.25億年前

魚類は側系統 単一のグループを形成しない

メクラウナギ

ヤツメウナギ

無顎類 ヤツメウナギ・メクラウナギ

顎をもたない。

軟骨性の内部骨格(未発達)

胸鰭・腹鰭が発達していない(遊泳力が弱い)

鰾をもたない。

淡水域に進出、浸透圧調整能力を獲得(海はオオムガイ支配)

軟骨魚類 ギンザメ・サメ・エイ

軟骨性の骨格発達

鰭発達

鰾を持たない

硬骨魚類 化骨化進む

条鰭魚類 肺をウキブクロとして利用 (真骨魚へ)・再び海へ肉鰭魚類

肺魚 肺を利用して空気呼吸

シーラカンス

四肢動物へ 肺を利用して陸上に進出

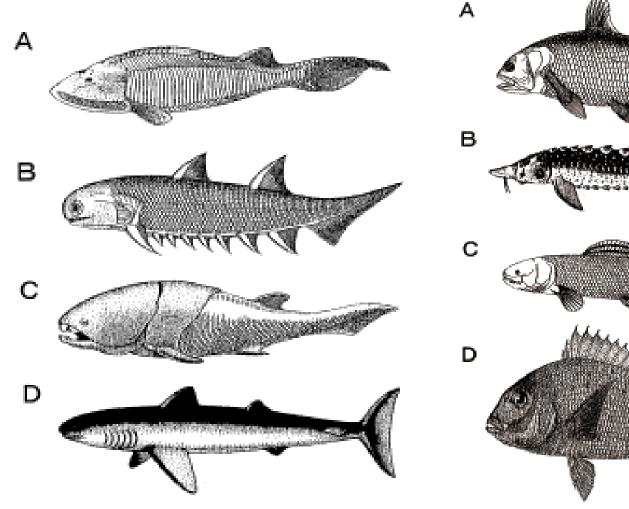


図1 無顎類から軟骨魚類まで(奥野 1990 より)

A: ヘミキクラスピス(無顎類)

B: エウタカントゥス(棘魚類)

C: ココステウス(板皮類)

D: クラドセラケ(最古の軟骨魚類)

4 現生の硬骨魚類(A~Cは奥野 1990、Dは岡田 1969より)

A: ラティメリア(肉鰭類)

B:チョウザメ(軟質類)

C:アミア(軟質類)

D:マダイ(真骨類)

進化(適応戦略の多様化と大絶滅)

- スノーボールアース仮説とは 地球は今まで3回、赤道まで氷が覆うほど寒冷化したおことがある。
- 従来、地球のスノーボール化はあり得ないとされていた。 海が残っていることを何よりの証拠とする。 氷で覆われればアルベドが高くなり、2度と元にもどらない。 海が残っているのだからスノーボールアースはなかった。

スノーボールからの脱出のメカニズムが必要 最近の説

海洋は弱アルカリ: CO2(温室ガス)の巨大な吸収場所 海がなくなれば、大気のCO2濃度が上がり温室化する。

ポイント:スノーボールアースは大絶滅の原因の一つ。

ヒューロニアン氷河時代(約24億5000万年前から約22億年前)

シアノバクテリアが光合成の結果、酸素を大気に放出し、 大気中の二酸化炭素濃度が低下(温室ガス効果の低下)

生物の死骸が分解されて二酸化炭素放出(温室効果の復活) その後酸素呼吸をする生物が出現。(バランスが取れる。)

原生代末期のスターチアン氷河時代およびマリノニアン氷河時代 (約7億3000万年前~約6億3500万年前)

陸地面積が増えてアルカリイオンが海に溶け出し、 アルカリ濃度が上がり、海の二酸化炭素吸収力が過剰になる (温室ガス効果の低下)

エディアカラ生物群の絶滅原因 カンブリア大爆発のきっかけ 古生代以後の大量絶滅

オルドビス紀末(4.35億年前)

超新星爆発が原因か?

全種の85%が絶滅、三葉虫半減

魚類の繁栄(デュボン紀)を迎える

デュボン紀後期(3.6億年前)

海面後退、乾燥化、低酸素化

全種の82%絶滅、甲冑魚絶滅

ペルム期末(2.5憶年前)

高温化•酸素濃度低下?

全種の90~95%絶滅

三葉虫絶滅

低酸素に対する適応を身につけていた恐竜の祖先が生き残る

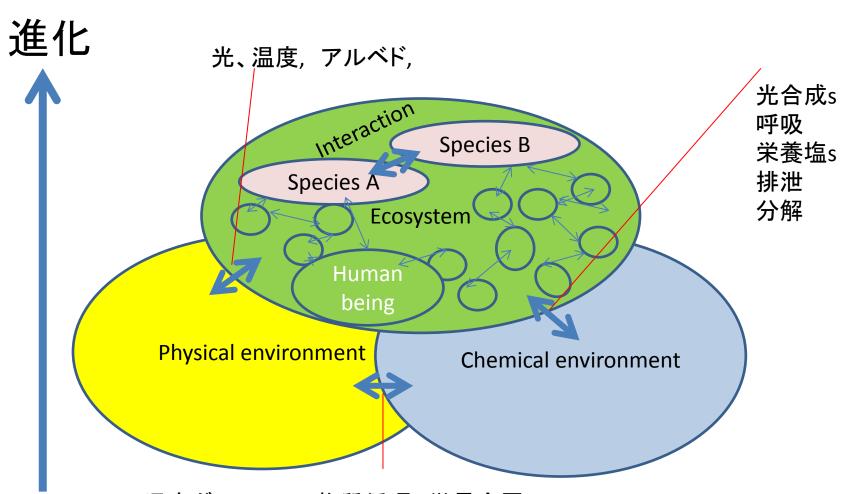
中生代の大絶滅 三畳紀末(2.12億年前)

火山活動との関連?

76%絶滅

大型の爬虫類絶滅

まだ小さかった恐竜の祖先が生き残る。


白亜紀末(6550万年前)

巨大隕石の衝突?

恐竜の絶滅。

現在

種の多様性は低下している人間という生物が環境を悪化させた

温室ガス、pH, 物質循環、微量金属s

生物の相互関係

従属栄養:独立栄養

有機物の生産

捕食:被捕食

多細胞生物(口のある生物)

競争関係

大きさの競争

維管束植物

光獲得を巡る高さの競争

吸収や輸送とトレードオフt

適応戦略

r-戦略: K 戦略

適応戦略:r-K戦略説

$$\frac{dN}{dt} = r(K - N)N$$

式のイメージは下図のような感じ

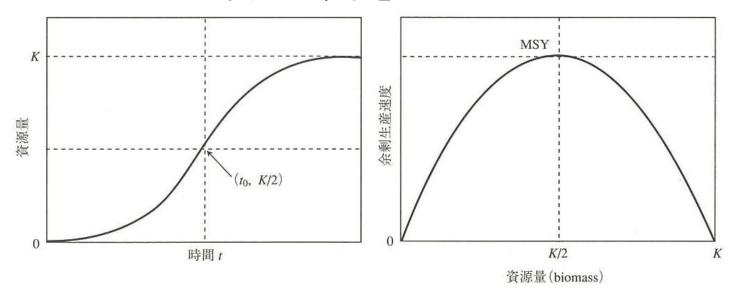


図3-11 logistic モデルによる生物個体群の増殖過程(左)と、資源量と増殖速度の関係および Schaefer の余剰生産量モデル(右).

植物プランクトンはr選択的 木はK選択的

生物生産の特徴

rを大きくする作戦

たとえば:たくさん子供を産む(短いインターバルで子供を作る。) Kを大きくする作戦

環境収容力を大きくする たとえば、他の生物との競争に負けないように身体を大きくする 大きな子を産む

rとKはトレードオフの関係にある。 卵を大きくすると卵の数を多くできない。

植物にもr選択とK選択がある 光を潜る競争。水・栄養塩を巡る競争 栽培作物は、適度なr-K戦略 毎年収穫できる。 安定的に収穫できる

木では困る。植物プランクトンでも困る。 作物(米、稲、芋)は毎年収穫できて保存性も良い

森を開いて畑を作る理由 森は一回作られると安定的で光をさえぎる

人の歴史を整理する

霊長目の出現 ビタミC合成能力のない霊長目 最初の類人猿 人とチンパンジーの分化 猿人(アウストラロピテクス) Homo属の出現 石器の使用 オルドワン石器 ホモサピエンス出現 ホモサピエンス、アフリカを出る スマトラ・トバ火山の大爆発 人類の人口が1万人以下となる。 6500万年前 6300万年前 2500万年前 600~500万年前

250年前(更新世) 250~180万年前

25万年前 10万年前 7.5万年前 モンゴロイド、アメリカ大陸にわたる. 最後の氷期が終わる このころまでに犬は家畜化され モンゴロイドはアメリカ大陸南端に到達。

3~2万年前 1万年前

焼畑による陸稲栽培(中国河西省・湖南省) 12,000年前 11,500年前 ギョベクリ・テベ遺跡建設(トクコ南東部) 狩猟民が行った集団的祭祀の遺跡 宗教が先か農耕(文化)先か 9,000年前 イエリコ(jerico)の遺跡 牧畜・と農耕の跡 オオムギ・コムギ・エンドウ・ビート ヤギ・ヒツジ・ブタ パプア・ニューギニア、導水溝跡 サトウキビ・ヤム・タロ・バナナ 犬、ブタ、ニワトリ 石斧・堀棒(鍬はない) 7,000-6,500年前 大規模な水稲栽培 浙江省河姆渡遺跡 5,000年前 アメリカ大陸の農耕の跡 ジャガイモ・トマト・トウモロコシ・カボチャ リャマ 鉄器を持たない

農耕と牧畜の始まりは多元的? 西アフリカサバンナ農耕文化 ササゲ・ヒョウタン・ゴマ 紀元前4500~4000年ごろ メソポタミアに神殿をたてて 農村的共同体を営む人々が出現(新石器時代)

紀元前3,500年ごろ メソポタミア南部にシュメール人が移動

紀元前3,150年ごろ エジプト上下王朝の統一

紀元前1,800年ごろ 世界最古の鉄器(カマン・カレホユック遺跡・トルコ)

紀元前1,700年ごろ 中国殷朝成立

紀元前1,680年ごろ ヒッタイト王国成立

ヒッタイト(鉄器を持つ文化)

紀元前1,190年ごろ ヒッタイト滅亡

エジプト・メソポタミアに鉄器文化が広がる。

中国では殷代に鉄器有った?

鉄器の普及は春秋戦国時代(紀元前770年~紀元前221年)

前漢(紀元前206~8)の時代に鉄器の普及が本格化

農業の発達と鉄器 鉄器ができる前は堀棒と石斧 鉄の鋤・鍬 牛に犂を引かせえて耕す 大規模灌漑施設の建設が可能になる。

家畜

犬 紀元前12,000 東アジア 山羊 紀元前10,000 西南アジア 紀元前10,000 西南アジア 羊 中国,西南アジア,ヨーロッパ 紀元前 8,000 豚 西アジアで家畜化 牛 紀元前 8,000 馬 紀元前 4,000 南ロシアで家畜化 鶏 紀元前 4,000 東南アジアで家畜化

酪農 紀元前 5,000 メソポタミア

農業史のポイント

紀元前6000年ごろ メソポタミア・エジプト・イランで灌漑工事

紀元前600年ごろ 木製の犂

8-9世紀 ヨーロッパにおける封建制度の確立

西ヨーロッパの農村化

外民族の侵入による

10-11世紀 三圃制農業が始まる

1492 コロンブスによる新大陸の発見

18世紀 農業革命

ノーフォーク農法

大麦→クローバー→小麦→カブ

休耕地を作らない。土地の囲い込み

産業革命

原料供給・消費地としての植民地

1798 「人口論」マルサス

1817 「経済及び課税の原理」(リカード)

貿易の利益・比較優位論

```
1859 「種の起源」ダーウィン
   蒸気式トラクターの販売
1865 メンデルの法則の発見
1892 内燃式トラクターの販売
1900 メンデルの法則の再発見
1908 ハーバー・ボッシュ法の考案
               安価な窒素肥料
1917 フォードソン・トラクターF型販売
1940-1960 緑の革命
1945 FAO設立
1953 DNA二重らせん構造の提唱(ワトソン、クリック)
1958 キーリング、マウナロア山で大気中の
           二酸化炭素濃度の測定開始
```

後にキーリング曲線を示す

```
1960 IRRI (International Rice Research Institute)
         設立
1962 「沈黙の春」レイチェル・カールソン
1966 IR-8育成
1970 アスワンハイダム完成
1971 CGIAR 設立
     Consultation Group for International
      Agricultural Research
1972 「成長の限界」ローマクラブ
1986 ガット・ウルガイラウンド始まる
1995 WTO (World Trade Organization) 設立
2008 原油価格・穀物価格の高騰
2011 福島原子力発電所事故
```