
III-3. Mathematical explanations 

III-3-1. Taylor expansion 

 

Taylor expansion is a method to approximately transform complicate function to 

polynomial.  Coefficients of terms of polynomial are calculated from high-order 

derivatives and Taylor expansion is generally explained repeats of partial integration.  

However, target readers of this text are not familiar with mathematics. The author try 

to explain Taylor expansion by law of mean and concept of derivation.  

 

III-3-1-1. law of mean and continuity  

Definition of derivation of function is as follow 

𝑓′(𝑥) = lim
ｈ→０

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ｈ
 

𝑓ᇱ(𝑥)：derivate of 𝑓(𝑥) 
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𝑓ᇱ(𝑥) can be expressed as ௗ௙(௫)

ௗ௫
 in another notation system. This notation is defining 

that the function should be derivate by 𝑥. Second order derivation is expressed as 𝑓ᇱ′(𝑥) 

or 
ௗమ௙(௫)

ௗ௫మ
. Higher order derivation such as n-order derivation is expressed as 𝑓(௡)(𝑥) or 

ௗ೙௙(௫)

ௗ௫೙
. 

                
 

Fig.22. Concept of derivate 

 

Curving line in figure 22 is function 𝑓(𝑥).  We fix a point on the line. The point is 

(𝑥, 𝑓(𝑥) ). Another point on the line is (𝑥 + ℎ, 𝑓(𝑥 + ℎ) ). We consider a straight line 



passing both points. When we move the point (𝑥 + ℎ, 𝑓(𝑥 + ℎ) ) on the curving line by 

changing h, the slope changes.  The slope can be calculated as follow. 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

When we move the point to the nearest of (𝑥, 𝑓(𝑥) ), if the slope reaches a definite value, 

we can descript the value as derivate value. 

This is expressed by following formula.   

𝑓′(𝑥) = lim
௛→଴

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

In another word, derivate value is slope of the tangent line at (𝑥, 𝑓(𝑥)).  

When the line is continuous at (𝑥, 𝑓(𝑥)), we can also express the formula as follows. 

𝑓′(x) = lim
     ｈ→０

𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ｈ
 

In analytical mathematics, “continuous” is very important idea and we need cumbersome   

discussion using ε − δ logic for complete understanding. However, honestly, the author 

hates such discussions from my first lecture of mathematics in general education course 

nearly 50 years ago. The readers can understand Taylor expansion without such a boring 

lecture. Here “continuous” simply means the line does not reach ∞ or −∞ or connect 

with other function at the point.   

                         

Fig.23. Concept of law of mean 

 

III-3-1-2. Explanation of Taylor expansion by law of mean  

Then we consider the relation between 

f′(x) = lim
ｈ→０

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ｈ
 

And           



𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ｈ
 

When 𝑥 = 𝑎,  𝑥 + ℎ = 𝑏,  

𝑓(ｂ) − 𝑓(𝑎)

𝑏 − 𝑎
 

As shown in figure 23, above formula is slope of the line connecting （𝑎, 𝑓(𝑎)）and (𝑏, 𝑓(𝑏)). 

From this, we can understand that there are more than one point between （𝑎, 𝑓(𝑎)）

and (𝑏, 𝑓(𝑏))at which the slope ( derivate at the point) is the same with the slope of the 

connecting line 𝑓(𝑥) in any shapes of line. In figure 23, (𝑐ଵ, 𝑓(𝑐ଵ)) and (𝑐ଶ, 𝑓(𝑐ଶ)) are such 

points（𝑎 ≤ 𝑐 ≤ 𝑏.  

This is expressed as follow. 

There exist at least one c following the next formula 

𝑓(ｂ) − 𝑓(𝑎)

𝑏 − 𝑎
= 𝑓′(𝑐),（𝑎 ≤ 𝑐 ≤ 𝑏)  

Formula 27 

The readers may consider this sentence tells own story, though this law is important as 

base of various propositions and formula.    

 

What we want to do by Taylor expansion is approximation of function 𝑓(𝑥) of which 

shape is unknown because of some reason by data of a point൫𝑎, 𝑓(𝑎)൯ and derivatives 

 𝑓′(𝑎), 𝑓′′(𝑎),  ……𝑓(௡)(𝑎). 

From law of mean, 

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= 𝑓′(𝑐ଵ),      a ≤ 𝑐ଵ ≤ x 

               𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑐ଵ)        

Formula 28 

As of now, we don’t know 𝑓(𝑥). It is not likely to estimate 𝑓′(𝑐ଵ) and 𝑐ଵ. 

If we know 𝑎, f(𝑎) and 𝑓′(𝑎), we can consider to use 𝑓′(𝑎) instead of 𝑓′(𝑐ଵ) as follow.  

𝑓(𝑥) ≑ 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) 

Of course, this is ridiculous. Generally, this is impossible. However, is this always 

impossible? 

How about the case of 𝑓(𝑥) = 𝑥 ? 

 𝑓′(𝑥) = 1  

𝑓′(𝑥) is constant regardless of 𝑥 

𝑓′(𝑥) = 𝑓′(𝑐ଵ) = 𝑓′(𝑎) = 1 

So in this case, we can say 



𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎)          

Confirmation 

𝑓(𝑎) = 𝑎 and 𝑓ᇱ(𝑎) = 1 

We can put this in formula 28 

𝑓(𝑥) = 𝑎 + (𝑥 − 𝑎) ∗ 1 = 𝑥 

This relation is true in the case of 𝑓(𝑥)  = B𝑥  and 𝑓(𝑥) = A + B𝑥 , because 𝑓′(𝑥)  is 

constant.  

 

The author supposes that several readers are angry, when they read above explanation. 

Because the line of the 𝑓(𝑥)  is linear and the slope of constant in the case of  𝑓(𝑥)  =

B𝑥 and 𝑓(𝑥) = A + B𝑥.  There is no surprise.  

 

How about in the case of 𝑓(𝑥) = 𝑥ଶ? 

𝑓′(𝑥) = 2𝑥 

𝑓′(𝑐ଵ) = 2𝑐ଵ 

𝑓′(𝑎) = 2𝑎 

So 

𝑓′(𝑐ଵ) ≠ 𝑓(𝑎) 

and we cannot put those in formula 28. 

However, we do not need to give up here. We can use second order derivative. Before that, 

it is better to confirm the relation among  𝑐ଵ 𝑥 and 𝑎. 

From 

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= 𝑓′(𝑐ଵ) 

, the relation is as follow. 

𝑥ଶ − 𝑎ଶ

𝑥 − 𝑎
= 2𝑐ଵ 

𝑥 + 𝑎 = 2𝑐ଵ 

𝑐ଵ =
𝑥 + 𝑎

2
 

Conclusively we can say that 𝑐ଵ is average of 𝑥 and 𝑎 or that 𝑐ଵ is at midpoint of 𝑥 

and 𝑎. 

Then the derivative is  

𝑓′′(𝑥) = 2 

 So, 

𝑓′′(𝑥) = 𝑓′′(𝑐ଶ) = 𝑓′′(𝑎) = 2 



𝑐ଶ can be any point between 𝑎 and 𝑥. 

So, using law of mean, 

𝑓′(𝑥) = 𝑓′(𝑎) + (𝑥 − 𝑎)𝑓′′(𝑐ଶ) 

then  

𝑓′(𝑐ଵ) = 𝑓′(𝑎) + (𝑐ଵ − 𝑎)𝑓′′(𝑎) 

The relation among 𝑥, 𝑎 and 𝑎 is  

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑐ଵ)        

So,              

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎){𝑓′(𝑎) + (𝑐ଵ − 𝑎)𝑓′′(𝑎)} 

Using 𝑐ଵ =
௫ା௔

ଶ
, 

          𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎) ቄ𝑓′(𝑎) + ((
௫ା௔

ଶ
) − 𝑎))𝑓′′(𝑎)ቅ    

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎) ቄ𝑓′(𝑎) + (
𝑥 − 𝑎

2
)𝑓′′(𝑎)ቅ 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥 − 𝑎)ଶ

2
𝑓′′(𝑎) 
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Conformation in the case of  𝑓(𝑥) = 𝑥ଶ 

𝑓(𝑎) = 𝑎ଶ 

𝑓′(𝑎) = 2𝑎 

𝑓′′(𝑎) = 2  

Right side members of formula 29 

𝑎ଶ + (𝑥 − 𝑎)(2𝑎) +
(𝑥 − 𝑎)ଶ

2
× 2 

= 𝑎ଶ + 2𝑎𝑥 − 2𝑎ଶ + 𝑥ଶ − 2𝑎𝑥 + 𝑎ଶ 

= 𝑥ଶ 

We could confirm 𝑓(𝑥) = 𝑥ଶ 

This relation is true in the case of 𝑓(𝑥) = A + B𝑥 + C𝑥ଶ. The author thinks that we do not 

need confirmation by calculating value of derivatives. Simply we can understand by 

thinking 𝑓(𝑥) = A + B𝑥 + C𝑥ଶ  is a result of parallel translation of 𝑓(𝑥) = C𝑥ଶ. 

 

The author thinks that most of readers already can suppose what the author will do in 

the next step. 

Yes, let’s try 𝑓(𝑥) = 𝑥ଷ 

𝑓(𝑥) = 𝑥ଷ 

𝑓′(𝑥) = 3𝑥ଶ 



𝑓′′(𝑥) = 3 ∗ 2𝑥 = 6𝑥 

𝑓′′′(𝑥) = 3 ∗ 2 = 6 

𝑓(𝑎) = 𝑎ଷ 

𝑓′(𝑎) = 3𝑎ଶ 

𝑓′′(𝑎) = 3 ∗ 2𝑎 = 6𝑎 

𝑓′′′(𝑎) = 3 ∗ 2 = 6 

We can obtain 

                𝑓′′(𝑐ଶ) = 𝑓′′(𝑎) + (𝑐ଶ − 𝑎)𝑓′′′(𝑎) 

Then we have to put those results to 𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑐ଵ) to get the conclusion, 

and obtainable conclusion is 𝑓(𝑥) = 𝑓(𝑎) +
(௫ି௔)

ଵ
𝑓′(𝑎) +

(௫ିୟ)మ

ଶ∗ଵ
𝑓′′(𝑎) +

(௫ିୟ)య

ଷ∗ଶ∗ଵ
𝑓′′′(𝑎). 

However, the process of transformation is not sophisticated and elegant. We need long 

line to show the process, though reader can understand what we want to do by Taylor 

expansion. We can proof more simply by partial integration. The author agrees the 

opinion that the method using partial integration is more elegant. However, the reader 

should know higher skills of differentiation and integration for understanding the proof 

process using differentiation or integration.   

 

III-3-1-3. Proof of Taylor expansion by derivatives of compound function 

Differentiation of a compound function is a method of calculation of derivatives of 

compound functions. 

The rule is expressed as follow. 

When 𝑧 = 𝑓(𝑦), 𝑦 = 𝑔(𝑥), and y is differentiable at 𝑥଴ 𝑎𝑛𝑑 𝑦 is differentiable at 𝑦଴, where 

 𝑦 = 𝑔(𝑥),  

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
∙

𝑑𝑦

𝑑𝑥
 

Proof 

From the conditions following derivatives are exist 

𝑦ᇱ =
𝑑𝑦

𝑑𝑥
= lim

௫→௫బ

𝑔(𝑥) − 𝑔(𝑥଴)

𝑥 − 𝑥଴
 

𝑧ᇱ =
𝑑𝑧

𝑑𝑦
= lim

௬→௬బ

𝑓(𝑦) − 𝑓(𝑦଴)

𝑦 − 𝑦଴
 

When 𝑥 → 𝑥଴,   

𝑦 → 𝑦଴ 

∵  𝑔(𝑥) is continuous at 𝑥 = 𝑥଴,  

(Some readers may consider this is trivial, though this non-trivial in any case. There 



are many function which has discontinuous points, we cannot fix value of the function 

at discontinuous points, When the function is differentiable at a point, the function is 

continuous at the point. See below) 

lim
௫→௫బ

൫𝑓(𝑥) − 𝑓(𝑥଴)൯ = lim
௫→௫బ

(𝑥 − 𝑥଴) ∙ lim
௫ି௫బ

𝑓(𝑥) − 𝑓(𝑥଴)

(𝑥 − 𝑥଴)
 

= 0 ∙ 𝑓(𝑥) 

= 0 

 

So, when 𝑥 → 𝑥଴,  

𝑓(𝑥) − 𝑓(𝑥଴) = 0 

𝑓(𝑥) = 𝑓(𝑥଴) 

This is the definition of continuity at 𝑥଴ 

When we consider (𝑥 − 𝑎)௡ is a compound function as follow 

z = 𝑓(𝑦) = 𝑦௡ and 𝑦 = 𝑔(𝑥) = 𝑥 − 𝑎  

(𝑥 − 𝑎)௡ = 𝑓(𝑦) 

𝑑𝑓(𝑦)

𝑑𝑦
= 𝑛𝑦௡ିଵ 

𝑑𝑔(𝑥)

𝑑𝑥
= 1 

𝑓ᇱ(𝑥) = {(𝑥 − 𝑎)௡}ᇱ =
𝑑𝑓(𝑦)

𝑑𝑦

𝑑𝑔(𝑥)

𝑑𝑥
= 𝑛𝑦௡ିଵ = 𝑛(x − a)௡ିଵ 

{(𝑥 − 𝑎)}′ = 1 

{(𝑥 − 𝑎)ଶ}′ = 2(𝑥 − 𝑎) 

                               ቄ
(௫ି௔)೙శభ

௡ାଵ
+ 𝐶ቅ

ᇱ

= (𝑥 − 𝑎)௡ 

This means that indefinite integral of (𝑥 − 𝑎)௡ is 
(௫ି௔)೙శభ

௡ାଵ
+ C. (C is constant) 

From 𝑓′′(𝑐ଶ) = 𝑓′′(𝑎) + (𝑐ଶ − 𝑎)𝑓′′′(𝑎), we can obtain following equation of line of 

tangency of 𝑓′(𝑥) by changing 𝑐ଶ by  

             𝑓′′(𝑥) = 𝑓′′(𝑎) + (𝑥 − 𝑎)𝑓′′′(a)  

𝑓′(𝑥) is integral of this equation. When we take definite integral in the interval of 

(𝑥, 𝑎) both side members, 

             𝑓′(𝑥) − 𝑓′(𝑎) = (𝑥 − 𝑎)𝑓′′(𝑎) +
(௫ି௔)మ

ଶ
𝑓′′′(𝑎)  

                        𝑓′(𝑥) = 𝑓′(𝑎) + (𝑥 − 𝑎)𝑓′′(𝑎) +
(௫ି௔)మ

ଶ
𝑓′′′(𝑎)    



Again, when we integrate both sides, 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥 − 𝑎)ଶ

2
𝑓′′(𝑎) +

(𝑥 − 𝑎)ଷ

2 ∗ 3
𝑓′′′(𝑎) 

Here,  

𝑓(𝑎) = 𝑎ଷ 

𝑓′(𝑎) = 3𝑎ଶ 

𝑓′′(𝑎) = 6𝑎 

𝑓′′′(𝑎) = 6 

So, 

           𝑓(𝑥) = 𝑎ଷ + (𝑥 − 𝑎) ∗ 3𝑎ଶ +
(௫ି௔)మ

ଶ
: 6𝑎 +

(௫ି௔)య

ଷ∗ଶ
∗ 6    

𝑓(𝑥) = 𝑎ଷ + 3𝑎ଶ𝑥 − 3𝑎ଷ + 3𝑎𝑥ଶ − 6𝑎ଶ𝑥 + 3𝑎ଷ + 𝑥ଷ − 3𝑎𝑥ଶ + 3𝑎ଶ − 𝑎ଷWe  

 𝑓(𝑥) = 𝑥ଷ 

We can confirm that we can write 𝑓(𝑥) = 𝑥ଷ estimate cubic formula, when we know 

the values of 𝑎, 𝑓(𝑎), 𝑓ᇱ(𝑎), 𝑓ᇱᇱ(𝑎), 𝑓′′′(𝑎). 

More elegant expression of this relation is as follow. 

𝑓(𝑥) = 𝑓(𝑎) +
(௫ି௔)

ଵ
𝑓′(𝑎) +

(௫ିୟ)మ

ଶ∗ଵ
𝑓′′(𝑎) +

(௫ିୟ)య

ଷ∗ଶ∗ଵ
𝑓′′′(𝑎)    

From these experiences, we suppose a general theory that when derivative value 

becomes constant after n times of differentiation. The function 𝑓(𝑥) can be expressed 

as follow.  

𝑓(𝑥) = 𝑓(𝑎) +
(௫ି௔)

ଵ
𝑓′(𝑎) +

(௫ି௔)మ

ଶ∗ଵ
𝑓′′(𝑎) +

(௫ି௔)య

ଷ∗ଶ∗ଵ
𝑓′′′(𝑎)   +          +

(௫ି௔)೙

௡!
𝑓(௡)(𝑎)  

Using Σ, the equation can be write as follow. 

𝑓(𝑥) = 𝑓(𝑎) + ෍
(𝑥 − 𝑎)௞

𝑘!
𝑓(௞)(𝑎

௡

௞ୀଵ

) 
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A new question is whether we can generalize this relation to all functions, because we 

cannot always obtain constant after finite times of differentiation. 

This is clear when we consider 𝑓(𝑥) = sin 𝑥. 

𝑓′(𝑥) = cos 𝑥 

𝑓′′(𝑥) = −sin 𝑥 

𝑓′′′(𝑥) = −cos 𝑥 

𝑓′′′′(𝑥) = sin 𝑥 

This is a rotation and we cannot obtain constant, and we cannot use formula 27. 

However, in the case 𝑥 is existing in neighborhood of 𝑎,  0 < |𝑥 − 𝑎| ≪ 1 



, and we can approximately neglect higher order terms. In another word, it can be said 

that even if the shape of the line is complicated curving line, neighborhood is 

approximately liner. Derivate of liner line is constant. 

So, in the case 𝑥 is existing in neighborhood of 𝑎. 

𝑓(𝑥) ≒ 𝑓(𝑎) +
(௫ି௔)

ଵ
𝑓′(𝑎) +

(௫ି௔)మ

ଶ∗ଵ
𝑓′′(𝑎) +

(௫ି௔)య

ଷ∗ଶ∗ଵ
𝑓′′′(𝑎)   +          +

(௫ି௔)೙

௡!
𝑓(௡)(𝑎)    
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This is Taylor expansion. Meaning of Taylor expansion is that we can approximately 

express all functions using multi order derivative values.   

 

Required times of differentiation is depending on distance of 𝑥 and 𝑎, and allowable 

error.  

Here, we consider the last term in right members of formula 31. 

(𝑥 − 𝑎)௡

𝑛!
𝑓(௡)(𝑎) 

When the formula is not approximate formula, the term should be written as follow. 

(𝑥 − 𝑎)௡

𝑛!
𝑓(௡)(𝑐) 

𝑐 fluctuate in range of (𝑎, 𝑥), and (௫ି௔)೙

௡!
𝑓(௡)(𝑐) fluctuate with value of 𝑐. in the range 

of maximum and minimum value of 𝑓(௡)(𝑥) in the range of (𝑎, 𝑥).  

So, error of the approximate formula 𝑓(𝑥) is within the fluctuation of (௫ି௔)೙

௡!
𝑓(௡)(𝑥).  

We named (௫ି௔)೙

௡!
𝑓(௡)(𝑥) as surplus term.  

 

III-3-1-4. proof of Taylor expansion by partial integration. 

Before proof, several readers may want to confirm partial integration. 

Partial integration is inverse operation of differentiation of multiplicated function. 

Differentiation of multiplicated function is as follows. 

When a function is in following form 

𝐹(𝑥) = 𝑓(𝑥)𝑔(𝑥) 

We say the function is multiplicated function  

We consider calculation of ௗி(௫)

ௗ௫
. This is differentiation of multiplicated function 

From definition of derivative 



𝑑𝐹(𝑥)

𝑑𝑥
= lim

௛→଴

𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ
 

When we express ௗி(௫)

ௗ௫
= 𝐹′(x) 

𝐹′(x) = lim
௛→଴

𝑔(𝑥 + ℎ)𝑓(𝑥 + ℎ) − 𝑔(𝑥)𝑓(𝑥)

ℎ
 

                       = lim
௛→଴

௚(௫ା௛)௙(௫ା௛)ି௚(௫ା௛)௙(௫)ା௚(௫ା௛)௙(௫)ି(௚(௫)௙(௫)

௛
 

∵ −𝑔(𝑥 + ℎ)𝑓(𝑥) + 𝑔(𝑥 + ℎ)𝑓(𝑥) = 0 

= lim
௛→଴

𝑔(𝑥 + ℎ){𝑓(𝑥 + ℎ) − 𝑓(𝑥)} + 𝑓(𝑥){𝑔(𝑥 + ℎ) − (𝑔(𝑥)}

ℎ
 

= lim
௛→଴

𝑔(𝑥 + ℎ)
{𝑓(𝑥 + ℎ) − 𝑓(𝑥)}

ℎ
+ lim

௛→଴
𝑓(𝑥)

𝑔(𝑥 + ℎ) − 𝑔(𝑥)

ℎ
  

= 𝑔(𝑥)𝑓′(𝑥) + 𝑔′(𝑥)𝑓(𝑥) 

Q.E.D 

This rule is generally expressed more simply using abridged notation. 

          {𝑔(𝑥)𝑓(𝑥)}′ = 𝑔(𝑥)𝑓′(𝑥) + 𝑔′(𝑥)𝑓(𝑥)        

Formula 32 

Rule of partial integration is obtained by integration of both side of formula 32. 

න{𝑔(𝑥)𝑓(𝑥)}ᇱ𝑑𝑥 = න 𝑔(𝑥)𝑓′(𝑥)𝑑𝑥 + න 𝑔′(𝑥)𝑓(𝑥)𝑑𝑥 

𝑔(𝑥)𝑓(x) = න 𝑔(𝑥)𝑓′(𝑥)𝑑𝑥 + න 𝑔′(𝑥)𝑓(𝑥)𝑑𝑥 

න 𝑔′(𝑥)𝑓(𝑥)𝑑𝑥 = 𝑔(𝑥)𝑓(𝑥) − න 𝑔(𝑥)𝑓′(𝑥)𝑑𝑥 

Formula 33 (partial integration) 

This formula is used generally in text books as a rule of partial integration. The author 

is memorizing the rule in following formula. 

𝑔(𝑥)𝑓(𝑥) = න 𝑔ᇱ(𝑥)𝑓(𝑥)𝑑𝑥 + න 𝑔(𝑥)𝑓′(𝑥)𝑑𝑥 

or following definite integration form. 

[𝑔(𝑡)𝑓(𝑡)]௔
௫ = න 𝑔ᇱ(𝑡)𝑓(𝑡)𝑑𝑡

௫

௔

+ න 𝑔(𝑡)𝑓′(𝑡)𝑑𝑡
௫

௔

 

Because the form is symmetric and easy to memory, and this form is sometimes 

convenient.  



When we consider partial integration of ∫
(௫ି௧)ೖ

௞!

ௗೖశభ௙(௧)

ௗ௧ೖశభ

௫

௔
𝑑𝑡 

Here, 

𝑔(𝑡) =
(𝑥 − 𝑡)௞

𝑘!
 

ℎ(𝑡) =
𝑑௞𝑓(𝑡)

𝑑𝑡௞
= 𝑓(௞)(𝑡) 

𝑑𝑔(𝑡)

𝑑𝑡
=

(𝑥 − 𝑡)௞ିଵ

(𝑘 − 1)!
 

𝑑ℎ(𝑡)

𝑑𝑡
=

𝑑௞ାଵ𝑓(𝑡)

𝑑𝑡௞ାଵ
= 𝑓(௞ାଵ)(𝑡) 

𝑑௞𝑓(𝑡)

𝑑𝑡௞
: 𝑘 𝑜𝑟𝑑𝑒𝑟 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑓(𝑡),   𝑓(௞)(𝑡) 

ቈ
(𝑥 − 𝑡)௞

𝑘!

𝑑௞𝑓(𝑡)

𝑑𝑡௞
቉

௔

௫

= − න
(𝑥 − 𝑡)௞ିଵ

(𝑘 − 1)!

𝑑௞𝑓(𝑡)

𝑑𝑡௞

௫

௔

𝑑𝑡 + න
(𝑥 − 𝑡)௞

𝑘!

𝑑௞ାଵ𝑓(𝑡)

𝑑𝑡௞ାଵ

௫

௔

𝑑𝑡 

𝐿𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 =
(𝑥 − 𝑥)௞

𝑘!

𝑑௞𝑓(𝑡)

𝑑𝑡௞
−

(𝑥 − 𝑎)௞

𝑘!

𝑑௞𝑓(𝑎)

𝑑𝑡௞
= −

(𝑥 − 𝑎)௞

𝑘!

𝑑௞𝑓(𝑎)

𝑑𝑡௞
= −

(𝑥 − 𝑎)௞

𝑘!
𝑓(௞)(𝑎) 

and 

−
(𝑥 − 𝑎)௞ାଵ

(𝑘 + 1)!

𝑑௞ାଵ𝑓(𝑎)

𝑑𝑡௞ାଵ
= − න

(𝑥 − 𝑡)௞

𝑘!

𝑑௞ାଵ𝑓(𝑡)

𝑑𝑡௞ାଵ

௫

௔

𝑑𝑡 + න
(𝑥 − 𝑡)௞ାଵ

(𝑘 + 1)!

𝑑௞ାଶ𝑓(𝑡)

𝑑𝑡௞ାଶ

௫

௔

 

When 𝑘 = 0 

න
𝑑𝑓(𝑡)

𝑑𝑡
𝑑𝑡 = 𝑓(𝑡) + 𝐶 

න
𝑑𝑓(𝑡)

𝑑𝑡
𝑑𝑡

௫

௔

= [𝑓(𝑡)]௔
௫ = 𝑓(𝑥) − 𝑓(𝑎) 

Conclusively, we can get following recurrence formula 

𝑓(𝑥) − 𝑓(𝑎) =                         න
𝑑𝑓(𝑡)

𝑑𝑡
𝑑𝑡

௫

௔

 

−(𝑥 − 𝑎)
𝑑𝑓(𝑎)

𝑑𝑡
= − න

𝑑𝑓(𝑡)

𝑑𝑡
𝑑𝑡

௫

௔

+ න (𝑥 − 𝑡)
𝑑ଶ𝑓(𝑡)

𝑑𝑡ଶ
𝑑𝑡

௫

௔

 

−
(𝑥 − 𝑎)ଶ

2

𝑑ଶ𝑓(𝑎)

𝑑𝑡ଶ
= − න (𝑥 − 𝑡)

𝑑ଶ𝑓(𝑡)

𝑑𝑡ଶ

௫

௔

𝑑𝑡 + න
(𝑥 − 𝑡)ଶ

2

𝑑ଷ𝑓(𝑡)

𝑑𝑡ଷ

௫

௔

𝑑𝑡 

−
(𝑥 − 𝑡)ଷ

3 ∙ 2

𝑑ଷ𝑓(𝑡)

𝑑𝑡ଷ
= − න

(𝑥 − 𝑡)ଶ

2

𝑑ଷ𝑓(𝑡)

𝑑𝑡ଷ

௫

௔

𝑑𝑡 + න
(𝑥 − 𝑡)ଷ

3 ∙ 2

𝑑ସ𝑓(𝑡)

𝑑𝑡ସ
𝑑𝑡

௫

௔

 

⋮ 



−
(𝑥 − 𝑎)௞

𝑘!

𝑑௞𝑓(𝑎)

𝑑𝑡௞
= − න

(𝑥 − 𝑡)௞ିଵ

(𝑘 − 1)!

𝑑௞𝑓(𝑡)

𝑑𝑡௞

௫

௔

𝑑𝑡 + න
(𝑥 − 𝑡)௞

𝑘!

𝑑௞ାଵ𝑓(𝑡)

𝑑𝑡௞ାଵ

௫

௔

𝑑𝑡 

−
(𝑥 − 𝑎)௞ାଵ

(𝑘 + 1)!

𝑑௞ାଵ𝑓(𝑎)

𝑑𝑡௞ାଵ
= − න

(𝑥 − 𝑡)௞

𝑘!

𝑑௞ାଵ𝑓(𝑡)

𝑑𝑡௞ାଵ

௫

௔

𝑑𝑡 + න
(𝑥 − 𝑡)௞ାଵ

(𝑘 + 1)!

𝑑௞ାଶ𝑓(𝑡)

𝑑𝑡௞ାଶ

௫

௔

 

⋮ 

−
(𝑥 − 𝑎)௡ିଵ

(𝑛 − 1)!

𝑑௡ିଵ𝑓(𝑎)

𝑑𝑡௡ିଵ
= − න

(𝑥 − 𝑡)௡ିଶ

(𝑛 − 2)!

𝑑௡ିଵ𝑓(𝑡)

𝑑𝑡௡ିଵ

௫

௔

𝑑𝑡 + න
(𝑥 − 𝑡)௡ିଵ

(𝑛 − 1)!

𝑑௡𝑓(𝑡)

𝑑𝑡௡

௫

௔

𝑑𝑡 

−
(𝑥 − 𝑎)௡

𝑛!

𝑑௡𝑓(𝑎)

𝑑𝑡௡
= − න

(𝑥 − 𝑡)௡ିଵ

(𝑛 − 1)!

𝑑௞ାଵ𝑓(𝑡)

𝑑𝑡௞ାଵ

௫

௔

𝑑𝑡 + න
(𝑥 − 𝑡)௡

𝑛!

𝑑௡ାଵ𝑓(𝑡)

𝑑𝑡௡ାଵ

௫

௔

𝑑𝑡 

                                                                              

Sum up all members of left side and right side 

𝑓(𝑥) − 𝑓(𝑎) − ෍
(𝑥 − 𝑎)௞

𝑘!

𝑑௞𝑓(𝑎)

𝑑𝑡௞

௡

௞ୀଵ

= න
(𝑥 − 𝑡)௡

𝑛!

𝑑௡ାଵ𝑓(𝑡)

𝑑𝑡௡ାଵ

௫

௔

𝑑𝑡 

𝑓(𝑥) = 𝑓(𝑎) + ෍
(𝑥 − 𝑎)௞

𝑘!

𝑑௞𝑓(𝑎)

𝑑𝑡௞

௡

௞ୀଵ

+ න
(𝑥 − 𝑡)௡

𝑛!

𝑑௡ାଵ𝑓(𝑡)

𝑑𝑡௡ାଵ

௫

௔

𝑑𝑡 

Final member (∫
(௫ି௧)೙

௡!

ௗ೙శభ௙(௧)

ௗ௧೙శభ

௫

௔
𝑑𝑡) is integration form of surplus term. 

 

 

 

 

When second order derivation is possible  

 ∫ 𝑔′(𝑥)𝑓′(𝑥)𝑑𝑥 = 𝑔(𝑥)𝑓′(𝑥) − ∫ 𝑔(𝑥)𝑓′′(𝑥)𝑑𝑥 

Definite integration between (𝑎, 𝑏) is 

         ∫ 𝑔′(𝑥)𝑓′(𝑥)𝑑𝑥 =
௕

௔
[𝑔(𝑥)𝑓′(𝑥)]௔

௕ − ∫ 𝑔(𝑥)𝑓′′(𝑥)𝑑𝑥
௕

௔
 

When 𝑔’(𝑥) = 1,  

න 𝑔′(𝑥)𝑓′(𝑥)𝑑𝑥 = න 𝑓′(𝑥)𝑑𝑥 = [𝑓(𝑥)]௔
௕ = 𝑓(𝑏) − 𝑓(𝑎)

௕

௔

௕

௔

 

∵ න 𝑓ᇱ(𝑥)𝑑𝑥 = 𝑓(𝑥) 

We have to consider 𝑔(𝑥) of which derivative 𝑔ᇱ(𝑥) = 1 

When 𝑔(𝑥) = −(𝑏 − 𝑥), 

𝑔ᇱ(𝑥) = 1        

න 𝑓′(𝑥)𝑑𝑥 =
௕

௔

[𝑔(𝑥)𝑓′(𝑥)]௔
௕ − න 𝑔(𝑥)𝑓′′(𝑥)𝑑𝑥

௕

௔

 



[𝑓(𝑥]௔
௕ = [−(𝑏 − 𝑥)𝑓′(𝑥)]௔

௕ + න (𝑏 − 𝑥)𝑓′′(𝑥)𝑑𝑥
௕

௔

 

 𝑓(𝑏) − 𝑓(𝑎) = −(𝑏 − 𝑏)𝑓′(𝑏) − {(−(𝑏 − 𝑎)𝑓′(a))} + න (𝑏 − 𝑥)𝑓′′(𝑥)𝑑𝑥
ୠ

௔

 

𝑓(𝑏) − 𝑓(𝑎) = (𝑏 − 𝑎)𝑓′(a) + න (𝑏 − 𝑥)𝑓′′(𝑥)𝑑𝑥
௕

௔

 

When we consider that 𝑔′(𝑥) = (𝑏 − 𝑥).  

𝑔(𝑥) =
−(𝑏 − 𝑥)ଶ

2
 

,and ∫ (𝑏 − 𝑥)𝑓′′(𝑥)𝑑𝑥
௕

௔
 is a definite partial integration of 𝑔′(𝑥)𝑓(𝑥) 

  

න (𝑏 − 𝑥)𝑓′′(𝑥)𝑑𝑥
௕

௔

= ቈ
−(𝑏 − 𝑥)ଶ

2
𝑓′′(𝑥)቉

௔

௕

+ න
(𝑏 − 𝑥)ଶ

2

௕

௔

𝑓′′′(𝑥) 

=
(𝑏 − 𝑎)ଶ

2
𝑓′′(𝑎) + න

(𝑏 − 𝑥)ଶ

2

௕

௔

𝑓′′′(𝑥) 

When we assign this result to 𝑓(b) − 𝑓(a) = (𝑏 − 𝑎)𝑓′(𝑎) + ∫ (𝑏 − 𝑥)𝑓′′(𝑥)𝑑𝑥
௕

௔
ば 

        𝑓(𝑏) − 𝑓(𝑎) = (𝑏 − 𝑎)𝑓′(𝑎) +
(௕ି௔)మ

ଶ
𝑓′′(𝑎) + ∫

(௕ି௫)మ

ଶ
𝑓′′′(𝑥)𝑑𝑥

௕

௔
  

Repeating this procedure, 

 𝑓(𝑏) − 𝑓(𝑎)  = 

(𝑏 − 𝑎)𝑓′(𝑎) +
(௕ି௔)మ

ଶ
𝑓′′(𝑎) +

(௕ି௔)య

ଷ∗ଶ
𝑓′′′(𝑎) + ⋯ ⋯ +

(௕ି௔)೙షభ

(௡ିଵ)!
𝑓(௡ିଵ)(𝑎) + ∫

(௕ିｘ)೙షభ

(௡ିଵ)!
𝑓(௡)(𝑥)𝑑𝑥

௕

௔
           

In the case 𝑓(𝑥) can be derivate n times and 𝑓(௡ାଵ)(𝑥) = 0 

 

𝑓(௡)(𝑥) is constant  

So. we can move out 𝑓(௡)(𝑥) from integration 

න
(𝑏 − ｘ)௡ିଵ

(𝑛 − 1)!
𝑓(௡)(𝑥)𝑑𝑥

௕

௔

= 𝑓(௡)(𝑥) න
(𝑏 − 𝑥))௡ିଵ

(𝑛 − 1)!
𝑑𝑥

௕

௔

 

and 

න
(𝑏 − 𝑥))௡ିଵ

(𝑛 − 1)!
𝑑𝑥

௕

௔

= ቈ
(𝑏 − 𝑥)௡

𝑛!
቉

௔

௕

 

=
(𝑏 − 𝑏)௡

𝑛!
− ቊ−

(𝑏 − 𝑎)௡

𝑛!
ቋ 

=
(𝑏 − 𝑎)௡

𝑛!
 

Then 𝑓௡(𝑥) is a slope of liner line of 𝑓௡ିଵ(𝑥), and 𝑓(௡)(𝑥) is constant. 



So 

               𝑓(௡)(𝑥) = 𝑓(௡)(𝑎) 

𝑓(𝑏) − 𝑓(𝑎) 

 = (𝑏 − 𝑎)𝑓′(𝑎) +
(௕ି௔)మ

ଶ
𝑓′′(𝑎) +

(௕ି௔)య

ଷ∗ଶ
𝑓′′′(𝑎) + ⋯ ⋯ +

(௕ି௔)೙షభ

(௡ିଵ)!
𝑓(௡ିଵ)(𝑎) +

(௕ି௔)೙

௡!
𝑓(௡)(𝑎)  

Our purpose is express 𝑓(𝑥) using multiple order derivatives. So, we change 𝑏 by 𝑥, 

and transposition 𝑓(𝑎) to right members. 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓ᇱ(𝑎) +
(𝑥 − 𝑎)ଶ

2
𝑓ᇱᇱ(𝑎) +

(𝑥 − 𝑎)ଷ

3 ∗ 2
𝑓ᇱᇱᇱ(𝑎) + ⋯ ⋯ +

(𝑥 − 𝑎)௡

𝑛!
𝑓(௡)(𝑎) 

 

Several readers may think proof is enough by this step, though we should consider 

cases when  𝑓(௡ାଵ)(𝑥) ≠ 0 

We will discuss whether we can change last member in right side of following equation 

by 
(௕ି௔)೙

௡!
𝑓௡(𝑐)  

𝑓(𝑏) − 𝑓(𝑎)  = 

(𝑏 − 𝑎)𝑓′(𝑎) +
(௕ି௔)మ

ଶ
𝑓′′(𝑎) +

(௕ି௔)య

ଷ∗ଶ
𝑓′′′(𝑎) + ⋯ ⋯ +

(௕ି௔)೙షభ

(௡ିଵ)!
𝑓(௡ିଵ)(𝑎) + ∫

(௕ିｘ)೙షభ

(௡ିଵ)!
𝑓(௡)(𝑥)𝑑𝑥

௕

௔
           

 

We do not know 𝑓௡(𝑥) in last term of right side. 

න
(𝑏 − ｘ)௡ିଵ

(𝑛 − 1)!
𝑓௡(𝑥)𝑑𝑥

௕

௔

 

When 𝑓௡(𝑥) is constant we can push out 𝑓௡(𝑥) from integration as 𝑓௡(𝑥) = 𝑓ｎ(𝑎). 

However, value of 𝑓௡(𝑥) fluctuates with 𝑥. One possible idea is pushing out  

𝑓௡(𝑥) from inside of integration as constant giving error range. It is possible, because, 

even 𝑓௡(𝑥) fluctuate, the value is limited in a small range depending on the distance 

between 𝑎 and 𝑏. 

So, we can approximately express 𝑓௡(𝑥) as follow. 

𝑓௡(𝑥) ≑ 𝑓௡(𝑐) 

The relation is as follow 

𝑚 ≤ 𝑓௡(𝑐) ≤ 𝑀 

𝑚: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒  

𝑀: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒  

𝑎 ≤ 𝑐 ≤ 𝑏 

 

When we express the value of 𝑥, which gives minimum and maximum value of 𝑓௡(𝑥), 



𝑥௠ and 𝑥ெ.  

𝑓௡(𝑥௠) = 𝑚、𝑓௡(𝑥ெ) = 𝑀 

In the case when 𝑥௠ ≤ 𝑥ெ 

𝑎 ≤ 𝑥௠ ≤ 𝑐 ≤ 𝑥ெ ≤ 𝑏 

In the case when 𝑥ெ ≤ 𝑥௠ 

𝑎 ≤ 𝑥ெ ≤ 𝑐 ≤ 𝑥௠ ≤ 𝑏 

 

න
(𝑏 − 𝑥)௡ିଵ

(𝑛 − 1)!
𝑓௡(𝑥)𝑑𝑥

௕

௔

≑ න
(𝑏 − 𝑥)௡ିଵ

(𝑛 − 1)!
𝑓௡(𝑐)𝑑𝑥

௕

௔

= 𝑓௡(𝑐) න
(𝑏 − 𝑥)௡ିଵ

(𝑛 − 1)!
𝑑𝑥

௕

௔

=
(𝑏 − 𝑥)௡

𝑛!
𝑓௡(𝑐) 

𝑓(𝑏) − 𝑓(𝑎) 

 = (𝑏 − 𝑎)𝑓′(𝑎) +
(௕ି௔)మ

ଶ
𝑓′′(𝑎) +

(௕ି௔)య

ଷ∗ଶ
𝑓′′′(𝑎) + ⋯ ⋯ +

(௕ି௔)೙షభ

(௡ିଵ)!
𝑓௡ିଵ(𝑎) +

(௕ି௔)೙

௡!
𝑓௡(𝑐)  

Originally, our purpose is to express expression 𝑓(𝑥). So we change 𝑏 by 𝑥 and 

transposition 𝑓(𝑎) in left side to right side.  

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥 − 𝑎)ଶ

2
𝑓′′(𝑎) +

(𝑥 − 𝑎)ଷ

3 ∗ 2
𝑓′′′(𝑎) + ⋯ ⋯ +

(𝑥 − 𝑎)௡

𝑛!
𝑓௡(𝑐) 

The last term is surplus term. Surplus term is expressing error of estimation and error 

is called residuals and Generally, symbol residual is R. 

|R| ≤
(௕ି௔)೙

௡!
𝑀. 


