
V-1-5. Surrus’s rule 

 

Surrus’s rule is introduced as a calculation method of determinant of matrix in many text 

books. The name of Surrus’s rule is “Sarasu no houhou” in Japanese. The meaning of “houhou” 

is method. The author learned Surrus’s rule as a convenient calculation tool for determinant 

at first. The author is thinking that the introduction of Surrus’s rule should not be a simple 

introduction of convenient calculation method, and that it should be theoretical explanation 

of space geometrical structure. Because, the process of calculation is too long to finish without 

any mistakes, when we use Surrus’s rule in calculation of determinant of large matrix. Row 

reduction method is recommendable as easy and robust calculation method for large matrix. 

Moreover, Surrus’s rule includes various important concept of in linear algebra, and it is base 

of cofactor expansion.  

However, theoretical explanation of Surrus’s rule is technically difficult, because of limitation 

of illustration of multidimensional space in 2-dimensional plane. The author selects a method 

expansion of concept illustrated in 2-dimensional image to multidimensional space by analogy. 

Figure 50 is an explanation of transformation of unit square by a 2 × 2 matrix. 

 

 

 

 

 

 

 

 

          

        Fig. 50. Transformation of unit square by a matrix 

The matrix is ቀ
𝑎 𝑏
𝑘 𝑙

ቁ  

Yellow parallelogram is made by the multiplication of the matrix. The determinant of the 

matrix is as follow 

ቚ
𝑎 𝑏
𝑘 𝑙

ቚ = 𝑎𝑙 − 𝑏𝑘 

As in the explanation of previous paragraph, the determinant is the ratio of area of yellow 

parallelogram and unit square.  
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𝑉௧: area of yelow parallelogramOB′A′  

𝑉௨: area of unit square  

Here, 

𝑉௨ = 1 

Then  

𝑉௧ = 𝑎𝑙 − 𝑏𝑘 

On the other hand, when we calculate the area of yellow parallelogram geometrically. 

Area of square OEC’D = area of yellow parallelogram OBᇱCᇱA’ + ΔOEBᇱ + ΔECᇱBᇱ + ΔDAᇱC′ + ΔOA′D 

Area of square OEC’D = (𝑎 + 𝑘)(𝑏 + 𝑙) 

ΔOEBᇱ = ΔDAᇱCᇱ =
1

2
𝑘(𝑏 + 𝑙) 

ΔECᇱBᇱ = ΔOAᇱD =
1

2
𝑏(𝑎 + 𝑘) 

Area of square OEC’D = 𝑉𝑡 + ΔOEBᇱ + ΔECᇱBᇱ + ΔDAᇱC′ + ΔOA′D 

𝑉௧ = Area of square OEC’D − (ΔOEB′ + ΔEC′B′ + ΔDA′C′ + ΔOA′D) 

= (𝑎 + 𝑘)(𝑏 + 𝑙) − 𝑘(𝑏 + 𝑙) −  𝑏(𝑎 + 𝑘) 

= 𝑎𝑘 + 𝑎𝑙 + 𝑘𝑏 + 𝑘𝑙 − 𝑘𝑏 − 𝑘𝑙 − 𝑎𝑏 − 𝑘𝑏 

= 𝑎𝑙 − 𝑘𝑏 

We can confirm the area of area of yelow parallelogramOB′A′ (𝑉௧) is determinant.  We already 

know determinant is expansion ratio by the matrix and area of original unit square is 1. This 

is not sensational. However, when we watch the illustration carefully, we can notice following 

important fact. 

Value of 𝑎𝑙 is area of orange rectangle and value of 𝑘𝑏 is area of light blue rectangle. The 

area of the parallelogram can be obtained as a difference between the two rectangles. 

Moreover, the relation of horizontal and vertical are reverse between two rectangles. If 

we express this relation as positive and negative. We can accept the calculation not as 

difference but as sum of values in reverse direction.  

𝑉௧ = 𝑎𝑙 + (−𝑘𝑏) 

This is Surrus’s rule. We can expand this method to multidimensional space. When we remove 

a dimension from n-dimensional space. We can calculate (n-1)-dimensional super-volume 

(magnitude). We can accept the magnitude as n-dimensional super area. This is the 

determinant of matrix which not include the dimension as an element. We call the matrix as 

cofactor matrix. There are 𝑛 set of dimension and cofactor matrix. The magnitude of total n-

dimensional super volume is total sum of products of dimension and its cofactor including 

sign.  Figure 51 is schematic expression of Surrus’s rule in multidimension.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

                     Fig. 51. Schematic illustration of Surrus’s rule 

 

The rule is mathematically explained as follows. 

At first we select first column as a dimension to remove from original matrix. 

ተ

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

⋯ 𝑎ଵ

⋯ 𝑎ଶ

⋮ ⋮
𝑎ଵ 𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ = ተ

𝑎ଵଵ + 0 + ⋯ + 0 𝑎ଵଶ

𝑎ଶଵ + 0 + ⋯ + 0 𝑎ଶଶ

⋯ 𝑎ଵ

⋯ 𝑎ଶ

⋮ ⋮
𝑎ଵ + 0 + ⋯ + 0 𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ 

= ተ

𝑎ଵଵ + 0 + ⋯ + 0 𝑎ଵଶ

0 + 𝑎ଶଵ + ⋯ + 0 𝑎ଶଶ

⋯ 𝑎ଵ

⋯ 𝑎ଶ

⋮ ⋮
0 + ⋯ + 0 + 𝑎ଵ 𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ 

=
1

𝑛
ተ

𝑛𝑎ଵଵ 𝑎ଵଶ

0   𝑎ଶଶ

⋯ 𝑎ଵ

⋯ 𝑎ଶ

⋮     ⋮
0      𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ +
1

𝑛
ተ

0 𝑎ଵଶ

𝑛𝑎ଶଵ 𝑎ଶଶ

⋯ 𝑎ଵ

⋯ 𝑎ଶ

⋮ ⋮
0 𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ + ⋯ +
1

𝑛
ተ

0 𝑎ଵଶ

0 𝑎ଶଶ

⋯ 𝑎ଵ

⋯ 𝑎ଶ

⋮ ⋮
𝑛𝑎ଵ 𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ 

Swapping of rows 

=
(−1)

𝑛
ተ

𝑛𝑎ଵଵ 𝑎ଵଶ

0   𝑎ଶଶ

⋯ 𝑎ଵ

⋯ 𝑎ଶ

⋮     ⋮
0      𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ +
(−1)ଵ

𝑛
ተ

𝑛𝑎ଶଵ 𝑎ଶଶ

0 𝑎ଵଶ

⋯ 𝑎ଶ

⋯ 𝑎ଵ

⋮ ⋮
0 𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ + ⋯ +
(−1)ିଵ

𝑛
ተ

𝑛𝑎ଵ 𝑎ଶ

0  𝑎ଶଶ

⋯ 𝑎

⋯ 𝑎ଶ

  ⋮  ⋮
   0  𝑎ିଵ ଶ

    
⋱ ⋮
⋯ 𝑎ିଵ 

ተ 

Subtraction of scalar times of a row from other rows  

=
(−1)

𝑛
ተ

𝑛𝑎ଵଵ 0
0   𝑎ଶଶ

⋯ 0
⋯ 𝑎ଶ

⋮     ⋮
0      𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ +
(−1)ଵ

𝑛
ተ

𝑛𝑎ଶଵ 0
0 𝑎ଵଶ

⋯ 0
⋯ 𝑎ଵ

⋮ ⋮
0 𝑎ଶ

⋱ ⋮
⋯ 𝑎

ተ + ⋯ +
(−1)ିଵ

𝑛
ተ

𝑛𝑎ଵ 0
0  𝑎ଶଶ

⋯ 0
⋯ 𝑎ଶ

  ⋮  ⋮
   0  𝑎ିଵ ଶ

    
⋱ ⋮
⋯ 𝑎ିଵ 

ተ 

=
(−1)

𝑛
ተ

𝑛𝑎ଵଵ 0

0 อ

𝑎ଶଶ ⋯ 𝑎ଶ

⋮ ⋱ ⋮
𝑎ଶ ⋯ 𝑎

อ
ተ +

(−1)ଵ

𝑛
ተ

𝑛𝑎ଶଵ 0

0 อ

𝑎ଵଶ ⋯ 𝑎ଵ

⋮ ⋱ ⋮
𝑎ଶ ⋯ 𝑎

อ
ተ + ⋯ +

(−1)ିଵ

𝑛
ተ

𝑛𝑎𝑛1 0

0 อ

𝑎22 ⋯ 𝑎2𝑛

⋮ ⋱ ⋮
𝑎𝑛−1 2 ⋯ 𝑎𝑛−1 𝑛

อ
ተ 

𝑎 

𝑎ାଵ 
𝑛 − 1 dimension superplane 

Determinant of cofactor 

matrix of 𝑎   

n dimension supersolid

𝑎ାଶ 



= (−1)𝑎ଵଵ อ

𝑎ଶଶ ⋯ 𝑎ଶ

⋮ ⋱ ⋮
𝑎ଶ ⋯ 𝑎

อ + (−1)ଵ𝑎ଶଵ อ

𝑎ଵଶ ⋯ 𝑎ଵ

⋮ ⋱ ⋮
𝑎ଶ ⋯ 𝑎

อ + ⋯ + (−1)ିଵ𝑎ଵ อ

𝑎ଶଶ ⋯ 𝑎ଶ

⋮ ⋱ ⋮
𝑎ିଵ ଶ ⋯ 𝑎ିଵ 

อ 

This is basic procedure. The name of this procedure is cofactor expansion. We can reduce one 

dimension by this procedure and can obtain 𝑛 determinants of (𝑛 − 1)-dimensional matrix. 

We can repeat same procedure to reach 1 dimensional matrix. It is bothersome to write the 

process downward from n-dimension to 1-dimension. The author explains the process upward 

from 2-dimension.   

Case 1 ( 2 × 2) 

ቚ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቚ = ฬ

𝑎ଵଵ + 0 𝑎ଵଶ

𝑎ଶଵ + 0 𝑎ଶଶ
ฬ = ฬ

𝑎ଵଵ + 0 𝑎ଵଶ

0 + 𝑎ଶଵ 𝑎ଶଶ
ฬ =

1

2
ฬ
2𝑎ଵଵ 𝑎ଵଶ

0 𝑎ଶଶ
ฬ +

1

2
ฬ

0 𝑎ଵଶ

2𝑎ଶଵ 𝑎ଶଶ
ฬ 

=
1

2
ฬ
2𝑎ଵଵ 𝑎ଵଶ

0 𝑎ଶଶ
ฬ −

1

2
ฬ
2𝑎ଶଵ 𝑎ଶଶ

0 𝑎ଵଶ
ฬ =

1

2
ฬ
2𝑎ଵଵ 0

0 𝑎ଶଶ
ฬ −

1

2
ฬ
2𝑎ଶଵ 0

0 𝑎ଵଶ
ฬ

=
1

2
ฬ
2𝑎ଵଵ 0

0 |𝑎ଶଶ|
ฬ −

1

2
ฬ
2𝑎ଶଵ 𝑎ଶଶ

0 |𝑎ଵଶ|
ฬ = ฬ

𝑎ଵଵ 0

0 |𝑎ଶଶ|
ฬ − ฬ

𝑎ଶଵ 0

0 |𝑎ଵଶ|
ฬ 

= 𝑎ଵଵ|𝑎ଶଶ| − 𝑎ଶଵ|𝑎ଵଶ| = 𝑎ଵଵ𝑎ଶଶ − 𝑎ଶଵభమ
 

Case 2 ( 3 × 3) 

อ

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ = อ

𝑎ଵଵ + 0 + 0 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ + 0 + 0 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ + 0 + 0 𝑎ଷଶ 𝑎ଷଷ

อ = อ

𝑎ଵଵ + 0 + 0 𝑎ଵଶ 𝑎ଵଷ

0 + 𝑎ଶଵ + 0 𝑎ଶଶ 𝑎ଶଷ

0 + 0+𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ 

=
1

3
อ

3𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଶଶ 𝑎ଶଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
1

3
อ

0 𝑎ଵଶ 𝑎ଵଷ

3𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
1

3
อ

0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଶଶ 𝑎ଶଷ

3𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

อ 

=
1

3
อ

3𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଶଶ 𝑎ଶଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
−1

3
อ

3𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
1

3
อ

3𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଶଶ 𝑎ଶଷ

อ 

=
1

3
อ

3𝑎ଵଵ 0 0
0 𝑎ଶଶ 𝑎ଶଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
−1

3
อ

3𝑎ଶଵ 0 0
0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
1

3
อ

3𝑎ଷଵ 0 0
0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଶଶ 𝑎ଶଷ

อ 

=
1

3
อ

3𝑎ଵଵ 0 0
0 𝑎ଶଶ 𝑎ଶଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
−1

3
อ

3𝑎ଶଵ 0 0
0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
1

3
อ

3𝑎ଷଵ 0 0
0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଶଶ 𝑎ଶଷ

อ 

=
1

3
อ

3𝑎ଵଵ 0 0
0 𝑎ଶଶ 𝑎ଶଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
−1

3
อ

3𝑎ଶଵ 0 0
0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଷଶ 𝑎ଷଷ

อ +
1

3
อ

3𝑎ଷଵ 0 0
0 𝑎ଵଶ 𝑎ଵଷ

0 𝑎ଶଶ 𝑎ଶଷ

อ 

= 𝑎ଵଵ ቚ
𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଶ 𝑎ଷଷ
ቚ − 𝑎ଶଵ ቚ

𝑎ଵଶ 𝑎ଵଷ

𝑎ଷଶ 𝑎ଷଷ
ቚ + 𝑎ଷଵ ቚ

𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଶ 𝑎ଶଷ
ቚ 



Repeat same procedure as in case 1 (2 × 2) 

= 𝑎11 ൬ฬ
𝑎ଶଶ 0

0 |𝑎ଷଷ|
ฬ − ฬ

𝑎ଶଷ 0

0 |𝑎ଷଶ|
ฬ൰ − 𝑎21 ൬ฬ

𝑎ଵଶ 0

0 |𝑎ଷଷ|
ฬ − ฬ

𝑎ଵଷ 0

0 |𝑎ଷଶ|
ฬ൰ + 𝑎31 ൬ฬ

𝑎ଵଶ 0

0 |𝑎ଶଷ|
ฬ − ฬ

𝑎ଵଷ 0

0 |𝑎ଶଶ|
ฬ൰ 

= 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ − 𝑎ଵଵ𝑎ଶଷ𝑎ଷଶ − 𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଵଷ𝑎ଶଵ𝑎ଷଶ + 𝑎ଵଶ𝑎ଶଷ𝑎ଷଵ − 𝑎ଵଷ𝑎ଶଶ𝑎ଷଵ 

= 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ + 𝑎ଵଶ𝑎ଶଷ𝑎ଷଵ + 𝑎ଵଷ𝑎ଶଵ𝑎ଷଶ − (𝑎ଵଷ𝑎ଶଶ𝑎ଷଵ + 𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଵଵ𝑎ଶଷ𝑎ଷଶ) 

 

Case 3 ( 4 × 4) 

ቮ

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

𝑎ଵଷ 𝑎ଵସ

𝑎ଶଷ 𝑎ଶସ
𝑎ଷଵ 𝑎ଷଶ

𝑎ସଵ 𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ቮ = ተ

𝑎ଵଵ + 0 + 0 + 0 𝑎ଵଶ

0 + 𝑎ଶଵ + 0 + 0 𝑎ଶଶ

𝑎ଵଷ 𝑎ଵସ

𝑎ଶଷ 𝑎ଶସ

0 + 0 + 𝑎ଷଵ + 0 𝑎ଷଶ

0 + 0 + 0 + 𝑎ସଵ 𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ 

=
1

4
ተ

4𝑎ଵଵ 𝑎ଵଶ

0 𝑎ଶଶ

𝑎ଵଷ 𝑎ଵସ

𝑎ଶଷ 𝑎ଶସ

   
0    𝑎ଷଶ

0    𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ +
1

4
ተ

0 𝑎ଵଶ

4𝑎ଶଵ 𝑎ଶଶ

𝑎ଵଷ 𝑎ଵସ

𝑎ଶଷ 𝑎ଶସ

    
0    𝑎ଷଶ

0    𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ +
1

4
ተ
   

0   𝑎ଵଶ

0    𝑎ଶଶ

𝑎ଵଷ 𝑎ଵସ

𝑎ଶଷ 𝑎ଶସ

4𝑎ଷଵ 𝑎ଷଶ

0 𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ +
1

4
ተ
   

0    𝑎ଵଶ

0    𝑎ଶଶ

𝑎ଵଷ 𝑎ଵସ

𝑎ଶଷ 𝑎ଶସ

0 𝑎ଷଶ

4𝑎ସଵ 𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ 

=
1

4
ተ

4𝑎ଵଵ 𝑎ଵଶ

0 𝑎ଶଶ

𝑎ଵଷ 𝑎ଵସ

𝑎ଶଷ 𝑎ଶସ

   
0    𝑎ଷଶ

0    𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ −
1

4
ተ

4𝑎ଶଵ 𝑎ଶଶ

0 𝑎ଵଶ

𝑎ଶଷ 𝑎ଶସ

𝑎ଵଷ 𝑎ଵସ

    
0    𝑎ଷଶ

0    𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ +
1

4
ተ
   

4𝑎ଷଵ 𝑎ଷଶ 
0   𝑎ଵଶ 

𝑎ଷଷ 𝑎ଷସ

𝑎ଵଷ 𝑎ଵସ

      
0      𝑎ଶଶ

0       𝑎ସଶ

𝑎ଶଷ 𝑎ଶସ

𝑎ସଷ 𝑎ସସ

ተ −
1

4
ተ
   

4𝑎ସଵ 𝑎ସଶ

0    𝑎ଵଶ   

𝑎ସଷ 𝑎ସସ

𝑎ଵଷ 𝑎ଵସ

    
0      𝑎ଶଶ

0      𝑎ଷଶ

𝑎ଶଷ 𝑎ଶସ

𝑎ଷଷ 𝑎ଷସ

ተ 

=
1

4
ተ

4𝑎ଵଵ 0
0 𝑎ଶଶ

0 0
𝑎ଶଷ 𝑎ଶସ

   
0    𝑎ଷଶ

0    𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ −
1

4
ተ

4𝑎ଶଵ 0
0 𝑎ଵଶ

0 0
𝑎ଵଷ 𝑎ଵସ

    
0    𝑎ଷଶ

0    𝑎ସଶ

𝑎ଷଷ 𝑎ଷସ

𝑎ସଷ 𝑎ସସ

ተ +
1

4
ተ
   

4𝑎ଷଵ 0 
0   𝑎ଵଶ 

0 0
𝑎ଵଷ 𝑎ଵସ

      
0      𝑎ଶଶ

0       𝑎ସଶ

𝑎ଶଷ 𝑎ଶସ

𝑎ସଷ 𝑎ସସ

ተ −
1

4
ተ
   

4𝑎ସଵ 0
0    𝑎ଵଶ   

0 0
𝑎ଵଷ 𝑎ଵସ

    
0      𝑎ଶଶ

0      𝑎ଷଶ

𝑎ଶଷ 𝑎ଶସ

𝑎ଷଷ 𝑎ଷସ

ተ 

 

=𝑎ଵଵ อ

𝑎ଶଶ 𝑎ଶଷ 𝑎ଶସ

𝑎ଷଶ 𝑎ଷଷ 𝑎ଷସ

𝑎ସଶ 𝑎ସଷ 𝑎ସସ

อ − 𝑎ଶଵ อ

𝑎ଵଶ 𝑎ଵଷ 𝑎ଵସ

𝑎ଷଶ 𝑎ଷଷ 𝑎ଷସ

𝑎ସଶ 𝑎ସଷ 𝑎ସସ

อ + 𝑎ଷଵ อ

𝑎ଵଶ 𝑎ଵଷ 𝑎ଵସ

𝑎ଶଶ 𝑎ଶଷ 𝑎ଶସ

𝑎ସଶ 𝑎ସଷ 𝑎ସସ

อ − 𝑎ସଵ อ

𝑎ଵଶ 𝑎ଵଷ 𝑎ଵସ

𝑎ଶଶ 𝑎ଶଷ 𝑎ଶସ

𝑎ଷଶ 𝑎ଷଷ 𝑎ଷସ

อ 

Using same procedure as in case 2, the determinants in above equation is obtainable. 

By repeating this we can obtain Surrus’s rule in higher dimension (𝑛 × 𝑛 matrix) 

When we expand the method to n×n, the process becomes very long, though the 

calculation rule is simple and the author can explain how to calculate determinant by 

Surrus’s rule using illustration. 

 

1) Multiplicate all factors of on the line of arrow from upper left to lower right. 

 

 

 

 

 

 

2) Multiplicate all factors on the line of arrow beginning from next factor on the first 

⎝

⎜
⎛

𝑎ଵଵ    𝑎ଵଶ

𝑎ଶଵ    𝑎ଶଶ

𝑎ଵଷ

𝑎ଶଷ

⋯    𝑎ଵ

⋯    𝑎ଶ

⋯          ⋯ ⋯ ⋱    𝑎ଷଷ

𝑎ିଵଵ 𝑎ିଵଶ

𝑎ଵ 𝑎ଶ

𝑎ିଵଷ

𝑎ଷ
     

⋯   𝑎ିଵ

⋯    𝑎 ⎠

⎟
⎞

 



row and add the product to the value obtained by former procedure.  

 

 

 

 

 

 

3) Repeat same procedure to the end of the first row.  

      

       

 

 

 

4) Multiplicate all factors on the line of the arrow stating from upper end of the 

matrix, and deduct the value from former value. 

 

 

 

 

 

 

5) Move to the factor before former factor in fist row and deduct the vale from former 

value. 

 

 

 

 

 

 

6) Repeat former procedure to the left end of the first row. 

 

 

 

 

 

 

⎝

⎜
⎛

𝑎ଵଵ    𝑎ଵଶ

𝑎ଶଵ    𝑎ଶଶ

𝑎ଵଷ

𝑎ଶଷ

⋯    𝑎ଵ

⋯    𝑎ଶ

⋯          ⋯ ⋯ ⋱    𝑎ଷଷ

𝑎ିଵଵ 𝑎ିଵଶ

𝑎ଵ 𝑎ଶ

𝑎ିଵଷ

𝑎ଷ
     

⋯   𝑎ିଵ

⋯    𝑎 ⎠

⎟
⎞

 

⎝

⎜
⎛

𝑎ଵଵ    𝑎ଵଶ

𝑎ଶଵ    𝑎ଶଶ

𝑎ଵଷ

𝑎ଶଷ

⋯    𝑎ଵ

⋯    𝑎ଶ

⋯          ⋯ ⋯ ⋱    𝑎ଷଷ

𝑎ିଵଵ 𝑎ିଵଶ

𝑎ଵ 𝑎ଶ

𝑎ିଵଷ

𝑎ଷ
     

⋯   𝑎ିଵ

⋯    𝑎 ⎠

⎟
⎞

 

⎝

⎜
⎛

𝑎ଵଵ    𝑎ଵଶ

𝑎ଶଵ    𝑎ଶଶ

𝑎ଵଷ

𝑎ଶଷ

⋯    𝑎ଵ

⋯    𝑎ଶ

⋯          ⋯ ⋯ ⋱    𝑎ଷଷ

𝑎ିଵଵ 𝑎ିଵଶ

𝑎ଵ 𝑎ଶ

𝑎ିଵଷ

𝑎ଷ
     

⋯   𝑎ିଵ

⋯    𝑎 ⎠

⎟
⎞

 

⎝

⎜
⎛

𝑎ଵଵ    𝑎ଵଶ

𝑎ଶଵ    𝑎ଶଶ

𝑎ଵଷ

𝑎ଶଷ

⋯    𝑎ଵ

⋯    𝑎ଶ

⋯          ⋯ ⋯ ⋱    𝑎ଷଷ

𝑎ିଵଵ 𝑎ିଵଶ

𝑎ଵ 𝑎ଶ

𝑎ିଵଷ

𝑎ଷ
     

⋯   𝑎ିଵ

⋯    𝑎 ⎠

⎟
⎞

 

⎝

⎜
⎛

𝑎ଵଵ    𝑎ଵଶ

𝑎ଶଵ    𝑎ଶଶ

𝑎ଵଷ

𝑎ଶଷ

⋯    𝑎ଵ

⋯    𝑎ଶ

⋯          ⋯ ⋯ ⋱    𝑎ଷଷ

𝑎ିଵଵ 𝑎ିଵଶ

𝑎ଵ 𝑎ଶ

𝑎ିଵଷ

𝑎ଷ
     

⋯   𝑎ିଵ

⋯    𝑎 ⎠

⎟
⎞

 



7) Sum up the result of 1) to 3) and subtract the sum of 4) to 6). 

 

Following is an example in the case of 4 × 4. 

ተ

𝑎 𝑏
𝑔 ℎ

𝑐 𝑑
𝑖 𝑗

𝑘 𝑙
𝑠 𝑡

𝑚 𝑛
𝑢 𝑣

ተ 

= 𝑎ℎ𝑚𝑛 + 𝑏𝑖𝑛𝑠 + 𝑐𝑗𝑘𝑡 + 𝑑𝑔𝑙𝑚 − 𝑑𝑖𝑙𝑠 − 𝑐ℎ𝑘𝑣 − 𝑏𝑔𝑛𝑢 − 𝑎𝑗𝑚𝑡 

This is Sarrus’s rule. Sarrus’s rule is a result of successive cofactor expansions.  

 

 


