
V-2-3. Spectral decomposition 

 

Several concepts in basic linear algebra are introduced in this text book. The purpose of 

introduction of basic mathematics is deep understanding of commonly used 

multivariable analysis techniques. Multivariable analysis is used for simplifying 

information by summarizing factors to several major factors in many cases. For this 

purpose, people want to see the data as a superposition of individual impact explained 

by single independent factor.  

 

Following is a tangible example.   

When we look following matrix 

𝑫 = ൭
3 0 0
0 4 0
0 0 1

൱ 

We decompose the matrix as follow.  

𝑫 = ൭
3 0 0
0 4 0
0 0 1

൱ = 3 ൭
1 0 0
0 0 0
0 0 0

൱ + 4 ൭
0 0 0
0 1 0
0 0 0

൱ + 1 ൭
0 0 0
0 0 0
0 0 1

൱ 

Matrix ൭
1 0 0
0 0 0
0 0 0

൱, ൭
0 0 0
0 1 0
0 0 0

൱ and 1 ൭
0 0 0
0 0 0
0 0 1

൱ are unit vectors which are orthogonal 

each other.  We can recognize structure of data intuitively, because eigen vectors are 

according with coordinate of matrix.  

 

We denote each unit vector as follow. 

𝒆ଷ = ൭
1
0
0

൱ ,   𝒆ସ = ൭
0
1
0

൱ ,  𝒆ଵ = ൭
0
0
1

൱ 

𝑫 = 3𝒆ଷ + 4𝒆ସ + 𝒆ଵ 

As shown in above example, we can write each vector by multiplying real to unit vector. 

This is simplification of dataset. However, we cannot simplify non-diagonal matrixes 

intuitively. As an example, we cannot consider following matrix as superposition of 

orthogonal vectors.  

൭
8 5 7

−1 2 −1
−3 −3 −2

൱ 

In the case of non-diagonal matrix, we cannot simplify the matrix. Of course, we can 

simplify the matrix after diagonalization of the matrix. However, it is no meaning at 

this moment, because diagonalized matrix is not the original matrix. Keeping the wish 

for simplification of matrix as superposition of orthogonal vectors in order to discuss 

each factor separately, we trace the process of diagonalization step by step 



As an example, we diagonalize following matrix. 

𝑨 = ൭
2 −2 3
1 1 1
1 3 −1

൱ 

１．Calculation of eigenvalue using eigen equation.  

อ
2 − 𝜆 −2 3

1 1 − 𝜆 1
1 3 −1 − 𝜆

อ = 0 

(2 − 𝜆)(1 − 𝜆)(−1 − 𝜆) − 2 + 9 − 3(2 − λ) + 2(−1 − 𝜆) − 3(1 − 𝜆) = 0 

−𝜆ଷ + 2𝜆ଶ + 5𝜆 − 6 = 0 

λ = −2, 1, 3 

２．Calculation of eigen vector  

       Following λ = −2  

൭
2 −2 3
1 1 1
1 3 −1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = −2 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

4𝑥ଵ − 2𝑥ଶ + 3𝑥ଷ = 0 

𝑥ଵ + 3𝑥ଶ + 𝑥ଷ = 0 

𝑥ଵ + 3𝑥ଶ + 𝑥ଷ = 0 

𝑥ଵ = 11𝑥ଶ,       𝑥ଷ = −14𝑥ଶ 

          Eigenvector 

𝑡 ൭
11
1

−14
൱ 

Following λ = 1 

൭
2 −2 3
1 1 1
1 3 −1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

𝑥ଵ − 2𝑥ଶ + 3𝑥ଷ = 0 

𝑥ଵ + 𝑥ଷ = 0 

𝑥ଵ + 3𝑥ଶ − 2𝑥ଷ = 0 

𝑥ଵ = −𝑥ଶ,       𝑥ଷ = 𝑥ଶ 

   Eigenvector 

𝑡 ൭
−1
1
1

൱ 

Following λ = 3  

൭
2 −2 3
1 1 1
1 3 −1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 3 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

−𝑥ଵ − 2𝑥ଶ + 3𝑥ଷ = 0 

𝑥ଵ − 2𝑥ଶ + 𝑥ଷ = 0 

𝑥ଵ + 3𝑥ଶ − 4𝑥ଷ = 0 



𝑥ଵ = 𝑥ଶ = 𝑥ଷ 

   Eigenvector 

𝑡 ൭
1
1
1

൱ 

３．A matrix for orthogonalization of matrix A is  

𝑷 = ൭
11 −1 1
1 1 1

−14 1 1
൱ 

です。 

|𝑷| = อ
11 −1 1
1 1 1

−14 1 1
อ = 30 

𝑷் = ൭
11 1 −14
−1 1 1
1 1 1

൱ 

𝑷ି𝟏 =
1

|𝑷|

⎝

⎜⎜
⎛

ቚ
1 1
1 1

ቚ − ቚ
−1 1
1 1

ቚ ቚ
−1 1
1 1

ቚ

− ቚ
1 −14
1 1

ቚ ቚ
11 −14
1 1

ቚ − ቚ
11 1
1 1

ቚ

ቚ
1 −14
1 1

ቚ − ቚ
11 −14
−1 1

ቚ ቚ
11 1
−1 1

ቚ ⎠

⎟⎟
⎞

 

=
1

30
൭

0 2 −2
−15 25 −10
15 3 12

൱ 

   𝑷ି𝟏𝑨𝑷 =
ଵ

ଷ଴
൭

0 2 −2
−15 25 −10
15 3 12

൱ ൭
2 −2 3
1 1 1
1 3 −1

൱ ൭
11 −1 1
1 1 1

−14 1 1
൱ 

1

30
൭

0 + 2 − 2 0 + 2 − 6 0 + 2 + 2
−30 + 25 − 10 30 + 25 − 30 −45 + 25 + 10

30 + 3 + 12 −30 + 3 + 36 45 + 3 − 12
൱ ൭

11 −1 1
1 1 1

−14 1 1
൱ 

= ൭
0 −4 4

−15 25 −10
45 9 36

൱ ൭
11 −1 1
1 1 1

−14 1 1
൱ 

=
1

30
൭

0 − 4 − 56 0 − 4 + 4 0 − 4 + 4
−165 + 25 + 140 15 + 25 − 10 −15 + 25 − 10

495 + 9 − 504 −45 + 9 + 36 45 + 9 + 36
൱ 

=
1

30
൭

−60 0 0
0 30 0
0 0 90

൱ 

= ൭
−2 0 0
0 1 0
0 0 3

൱ 

൭
−2 0 0
0 1 0
0 0 3

൱ = −2 ൭
1 0 0
0 0 0
0 0 0

൱ + 1 ൭
0 0 0
0 1 0
0 0 0

൱ + 3 ൭
0 0 0
0 0 0
0 0 1

൱ 

𝑷ି𝟏𝑨𝑷 = −2 ൭
1 0 0
0 0 0
0 0 0

൱ + 1 ൭
0 0 0
0 1 0
0 0 0

൱ + 3 ൭
0 0 0
0 0 0
0 0 1

൱ 

𝑷ି𝟏𝑨𝑷 = −2 ൭
1
0
0

൱ ൭
1
0
0

൱

்

+ 1 ൭
0
1
0

൱ ൭
0
1
0

൱

்

+ 3 ൭
0
0
1

൱ ൭
0
0
1

൱

்

 



Multiplying 𝑷 and 𝑷ି𝟏 from left and right respectively 

𝑷𝑷ି𝟏𝑨𝑷𝑷ି𝟏 = 𝑷 ቌ−2 ൭
1
0
0

൱ ൭
1
0
0

൱

்

+ 1 ൭
0
1
0

൱ ൭
0
1
0

൱

்

+ 3 ൭
0
0
1

൱ ൭
0
0
1

൱

்

ቍ 𝑷ି𝟏 

𝑨 = 𝑷 ቌ−2 ൭
1
0
0

൱ ൭
1
0
0

൱

்

+ 1 ൭
0
1
0

൱ ൭
0
1
0

൱

்

+ 3 ൭
0
0
1

൱ ൭
0
0
1

൱

்

ቍ 𝑷ି𝟏 

Applying law of distribution, 

𝑨 = −2𝑷 ൭
1
0
0

൱ ൭
1
0
0

൱

்

𝑷ି𝟏 + 1𝑷 ൭
0
1
0

൱ ൭
0
1
0

൱

்

𝑷ି𝟏 + 3𝑷 ൭
0
0
1

൱ ൭
0
0
1

൱

்

𝑷ି𝟏 

= −
2

30
൭

11 −1 1
1 1 1

−14 1 1
൱ ൭

1
0
0

൱ ൭
1
0
0

൱

்

൭
0 2 −2

−15 25 −10
15 3 12

൱ +
1

30
൭

11 −1 1
1 1 1

−14 1 1
൱ ൭

0
1
0

൱ ൭
0
1
0

൱

்

൭
0 2 −2

−15 25 −10
15 3 12

൱

+
1

10
൭

11 −1 1
1 1 1

−14 1 1
൱ ൭

0
0
1

൱ ൭
0
0
1

൱

்

൭
0 2 −2

−15 25 −10
15 3 12

൱ 

Here 

൭
11 −1 1
1 1 1

−14 1 1
൱ ൭

1
0
0

൱ = ൭
11
1

−14
൱ 

(1 0 0) ൭
0 2 −2

−15 25 −10
15 3 12

൱ = (0 2 −2) 

൭
11 −1 1
1 1 1

−14 1 1
൱ ൭

0
1
0

൱ = ൭
−1
1
1

൱ 

(0 1 0) ൭
0 2 −2

−15 25 −10
15 3 12

൱ = (−15 25 −10) 

൭
11 −1 1
1 1 1

−14 1 1
൱ ൭

0
0
1

൱ = ൭
1
1
1

൱ 

(0 0 1) ൭
0 2 −2

−15 25 −10
15 3 12

൱ = (15 3 12) 

𝑨 = −2 ൭
11
1

−14
൱ (0 2 −2) + ൭

−1
1
1

൱ (−15 25 −10) + 3 ൭
1
1
1

൱ (15 3 12) 

= −2 ×
1

30
൭

0 22 −22
0 2 −2
0 −28 28

൱ +
1

30
൭

15 −25 10
−15 25 −10
−15 25 −10

൱ +
1

10
൭

15 3 12
15 3 12
15 3 12

൱ 

=

⎝

⎜
⎜
⎛

0 +
1

2
+

3

2

−22

15
+

−5

6
+

3

10

22

15
+

1

3
+

6

5

0 −
1

2
+

3

2
−

2

15
+

5

6
+

3

10

2

15
−

1

3
+

6

5

0 −
1

2
+

3

2

28

15
+

5

6
+

3

10
−

28

15
−

1

3
+

6

5⎠

⎟
⎟
⎞

 



= ൭
2 −2 3
1 1 1
1 3 −1

൱ 

This is only a confirmation of adequacy of matrix calculation rules. What is noteworthy 

in the calculation is the line  

𝑨 = −2𝑷 ൭
1
0
0

൱ ൭
1
0
0

൱

்

𝑷ି𝟏 + 1𝑷 ൭
0
1
0

൱ ൭
0
1
0

൱

்

𝑷ି𝟏 + 3𝑷 ൭
0
0
1

൱ ൭
0
0
1

൱

்

𝑷ି𝟏 

This means that when a matrix can be diagonalized as follow 

𝑷𝑨𝐏ି𝟏 = 𝚲 = ൮

λଵ 0
0 λଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ λ୬

൲ 

We  can express the matrix as follow 

𝑨 = λଵ𝑷 ቌ

1
0
⋮
0

ቍ ቌ

1
0
⋮
0

ቍ

்

𝑷ି𝟏 + λଶ𝑷 ቌ

0
1
⋮
0

ቍ ቌ

0
1
⋮
0

ቍ

𝑻

𝑷ି𝟏 + ⋯ + λ୬𝑷 ቌ

0
0
⋮
1

ቍ ቌ

0
0
⋮
1

ቍ

்

𝑷ି𝟏 

We denote the unit vectors as 𝑒௜. 

𝑨 = λଵ𝑷𝒆𝟏𝒆𝟏
𝑻𝑷ି𝟏 + λଶ𝑷𝒆𝟐𝒆𝟐

𝑻𝑷ି𝟏 + ⋯ + λ୬𝑷𝒆𝒏𝒆𝒏
𝑻𝑷ି𝟏 

Apropos of nothing, we consider how we can transform the equation in the case when 

𝑷ି𝟏 = 𝑷𝑻. 

𝑨 = λଵ𝑷𝒆𝟏𝒆𝟏
்𝑷ି𝟏 + λଶ𝑷𝒆𝟐𝒆𝟐

்𝑷ି𝟏 + ⋯ + λ୬𝑷𝒆𝒏𝒆𝒏
்𝑷ି𝟏 

= λଵ𝑷𝒆𝟏𝒆𝟏
𝑻𝑷் + λଶ𝑷𝒆𝟐𝒆𝟐

்𝑷் + ⋯ + λ୬𝑷𝒆𝒏𝒆𝒏
்𝑷் 

= λଵ𝑷𝒆𝟏(𝑷𝒆𝟏)் + λଶ𝑷𝒆𝟐(𝑷𝒆𝟐)் + ⋯ + λ୬𝑷𝒆𝒏(𝑷𝒆𝒏)𝑻 

    -------------------------------------------------------------------- 

Some readers may accept the trans formation 𝒆𝟏
𝑻𝑷𝑻 → (𝑷𝒆𝟏)் intuitively, Some cannot 

be accept the transformation without any explanation. We do not need any theoretical 

explanation. It is acceptable by tracing calculation process of example.  

𝑪 = ൬
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

൰ , 𝑫 = ൭
𝛼 𝛿
𝛽 𝜀
𝛾 𝜁

൱ 

𝑪𝑻 = ൭
𝑎 𝑑
𝑏 𝑒
𝑐 𝑓

൱ , 𝑫𝑻 = ൬
𝛼 𝛽 𝛾
𝛿 𝜀 𝜁

൰ 

𝑪 𝑫 = ൬
𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 𝑎𝛿 + 𝑏𝜀 + 𝑐𝜁
𝑑𝛼 + 𝑒𝛽 + 𝑓𝛾 𝑑𝛿 + 𝑒𝜀 + 𝑓𝜁

൰ 

(𝑪 𝑫)𝑻 = ൬
𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 𝑑𝛼 + 𝑒𝛽 + 𝑓𝛾
𝑎𝛿 + 𝑏𝜀 + 𝑐𝜁 𝑑𝛿 + 𝑒𝜀 + 𝑓𝜁

൰ = ൬
𝛼 𝛽 𝛾
𝛿 𝜀 𝜁

൰ ൭
𝑎 𝑑
𝑏 𝑒
𝑐 𝑓

൱ = 𝑫𝑻𝑪𝑻 



  𝑫𝑪 = ൭
𝛼 𝛿
𝛽 𝜀
𝛾 𝜁

൱ ൬
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

൰ = ቌ

𝑎𝛼 + 𝑑𝛿 𝑏𝛼 + 𝑒𝛿 𝑐𝛼 + 𝑓𝛿
𝑎𝛽 + 𝑑𝜀 𝑏𝛽 + 𝑒𝜀 𝑐𝛽 + 𝑓𝜀
𝑎𝛾 + 𝑑𝜁 𝑏𝛾 + 𝑒𝜁 𝑐𝛾 + 𝑓𝜁

ቍ 

(𝑫𝑪)𝑻 = ቌ

𝑎𝛼 + 𝑑𝛿 𝑎𝛽 + 𝑑𝜀 𝑎𝛾 + 𝑑𝜁
𝑏𝛼 + 𝑒𝛿 𝑏𝛽 + 𝑒𝜀 𝑏𝛾 + 𝑒𝜁
𝑐𝛼 + 𝑓𝛿 𝑐𝛽 + 𝑓𝜀 𝑐𝛾 + 𝑓𝜁

ቍ = ൭
𝑎 𝑑
𝑏 𝑒
𝑐 𝑓

൱ ൬
𝛼 𝛽 𝛾
𝛿 𝜀 𝜁

൰ = 𝑪𝑻𝑫𝑻 

   ---------------------------------------------------------------------------- 

When we can transform as follow 

𝑨 = λଵ𝑷𝒆𝟏(𝑷𝒆𝟏)் + λଶ𝑷𝒆𝟐(𝑷𝒆𝟐)் + ⋯ + λ୬𝑷𝒆𝒏(𝑷𝒆𝒏)் 

Letting 𝑷 = ൭
𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

൱ 

𝑷𝒆𝟏 = ൭
𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

൱ ൭
1
0
0

൱ = ቆ
𝑎
𝑏
𝑐

ቇ 

(𝑷𝒆𝟏)் = (𝑎 𝑏 𝑐) 

𝑷𝒆𝟏(𝑷𝒆𝟏)் = ൭
𝑎ଶ 𝑎𝑏 𝑐
𝑎𝑏 𝑏ଶ 𝑏𝑐
𝑎𝑐 𝑏𝑐 𝑐ଶ

൱ 

𝑷𝒆𝟐 = ൭
𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

൱ ൭
0
1
0

൱ = ൭
𝑑
𝑒
𝑓

൱ 

(𝑷𝒆𝟐)் = (𝑑 𝑒 𝑓) 

𝑷𝒆𝟐(𝑷𝒆𝟐)𝑻 = ቌ

𝑑ଶ 𝑑𝑒 𝑑𝑓

𝑑𝑒 𝑒ଶ 𝑒𝑓

𝑑𝑓 𝑒𝑓 𝑓ଶ

ቍ 

𝑷𝒆𝟑 = ൭
𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

൱ ൭
0
0
1

൱ = ቆ

𝑔
ℎ
𝑖

ቇ 

(𝑷𝒆𝟑)் = (𝑔 ℎ 𝑖) 

𝑷𝒆𝟑(𝑷𝒆𝟑)் = ቌ

𝑔ଶ 𝑔ℎ 𝑔𝑖

𝑔ℎ ℎଶ ℎ𝑖

𝑔𝑖 ℎ𝑖 𝑖ଶ

ቍ 

𝑨 = λଵ ቆ
𝑎
𝑏
𝑐

ቇ ቆ
𝑎
𝑏
𝑐

ቇ

்

+ λଶ ൭
𝑑
𝑒
𝑓

൱ ൭
𝑑
𝑒
𝑓

൱

்

+ λଷ ቆ

𝑔
ℎ
𝑖

ቇ ቆ

𝑔
ℎ
𝑖

ቇ

்

 

When a matrix has following nature  



𝑴 = 𝑴் 

the matrix is symmetric matrix. 

In another word, when following matrix is symmetric 

𝑴 = ൮

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

⋯ 𝑎ଵ௡

⋯ 𝑎ଶ௡

⋮ ⋮
𝑎௡ଵ 𝑎௡ଶ

⋱ ⋮
⋯ 𝑎௡௡

൲, 

𝑎௜௝ = 𝑎௝௜ 

 

As shown in the calculation of the example, products of ቆ
𝑎
𝑏
𝑐

ቇ ቆ
𝑎
𝑏
𝑐

ቇ

்

,

൭
𝑑
𝑒
𝑓

൱ ൭
𝑑
𝑒
𝑓

൱

்

 𝑎𝑛𝑑 ቆ

𝑔
ℎ
𝑖

ቇ ቆ

𝑔
ℎ
𝑖

ቇ

்

 are symmetric matrix. 

And the sum of the symmetric matrixes is symmetric matrix. So, 𝑨 is symmetric. 

 

From this, we can say that symmetric matrixes can be decomposed to sum of symmetric 

matrixes, if symmetric matrixes generally have nature that 𝑷ି𝟏 = 𝑷𝑻. 

At first, we consider the necessary condition of  𝑷ି𝟏 = 𝑷் 

The equation of 𝑷் = 𝑷ି𝟏 means   

𝑷்𝑷 = 𝑰 

We consider this condition from simple easy example. 

𝑷 = ቀ
𝑎 𝑏
𝑐 𝑑

ቁ 

𝑷் = ቀ
𝑎 𝑐
𝑏 𝑑

ቁ 

𝑷்𝑷 = ቀ
𝑎 𝑐
𝑏 𝑑

ቁ ቀ
𝑎 𝑏
𝑐 𝑑

ቁ = ቀ
1 0
0 1

ቁ 

From this equation 

𝑎ଶ + 𝑐ଶ = 1         i 

𝑏ଶ + 𝑑ଶ = 1         ii 

𝑎𝑏 + 𝑐𝑑 = 0         iii 

We can solve this simultaneous equation. However, when we consider 

𝑷 = (𝑷𝟏 𝑷𝟐) 

where 

𝑷𝟏 = ቀ
𝑎
𝑐

ቁ 



𝑷𝟐 = ቀ
𝑏
𝑑

ቁ 

The equation of i is |𝑷𝟏|ଶ  and the equation ii is |𝑷𝟐|ଶ. The equation iii is inner product 

of 𝑷𝟏 and 𝑷𝟐 

𝑷𝟏𝑷𝟐 = 𝟎 

From this, the necessary condition is 𝑷𝟏 and 𝑷𝟐 are unit vectors and are orthogonal 

each other 

In the case of 3 × 3 square matrix 

൭
𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

൱ ൭
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

൱ = ൭
1 0 0
0 1 0
0 0 1

൱ 

ቌ

𝑎ଶ + 𝑑ଶ + 𝑔ଶ 𝑎𝑏 + 𝑑𝑒 + ℎ𝑔 𝑎𝑐 + 𝑓𝑑 + 𝑖𝑔

𝑏𝑎 + 𝑑𝑒 + ℎ𝑔 𝑏ଶ + 𝑒ଶ + ℎଶ 𝑐𝑏 + 𝑒𝑓 + 𝑖ℎ

𝑎𝑐 + 𝑓𝑑 + 𝑖𝑔 𝑐𝑏 + 𝑒𝑓 + 𝑖ℎ 𝑐ଶ + 𝑓ଶ + 𝑖ଶ

ቍ = ൭
1 0 0
0 1 0
0 0 1

൱ 

𝑎ଶ + 𝑑ଶ + 𝑔ଶ = 1 

𝑏ଶ + 𝑒ଶ + ℎଶ = 1 

𝑐ଶ + 𝑓ଶ + 𝑖ଶ = 1 

𝑎𝑏 + 𝑑𝑒 + ℎ𝑔 = 0 

𝑎𝑐 + 𝑓𝑑 + 𝑖𝑔 = 0 

𝑐𝑏 + 𝑒𝑓 + 𝑖ℎ = 0 

This means the vectors which is the element of 𝑷 are unit vectors, and they are 

orthogonal each other.  Originally the vectors composing 𝑷 is originally eigenvectors 

of matrix 𝑨. From this we can conclude that when the eigenvectors of a symmetric 

matrix is orthogonal each other 𝑷ି𝟏 = 𝑷் 

 

Next, we verify that eigenvectors of symmetric matrixes are orthogonal each other.𝒙𝟏, 𝒙𝟐 

are eigenvector of matrix 𝑨. From the definition of eigenvalue and eigenvector. 

𝑨𝒙𝟏 = 𝜆ଵ𝒙𝟏         i 

𝑨𝒙𝟐 = 𝜆ଶ𝒙𝟐    ii 

Transpose i 

(𝑨𝒙𝟏)் = 𝜆ଵ𝒙𝟏
் 

𝒙𝟏
்𝑨் = 𝜆ଵ𝒙𝟏

்    i’ 

When matrix 𝑨 is symmetric matrix 

𝑨் = 𝑨 

Put this in i’ 

𝒙𝟏
்𝑨 = 𝜆ଵ𝒙𝟏

் 



Multiply 𝒙𝟐 to both sides from right 

𝒙𝟏
்𝑨𝒙𝟐 = 𝜆ଵ𝒙𝟏

்𝒙𝟐 

Put ii to left side of upper equation 

𝒙𝟏
்𝜆ଶ𝒙𝟐 = 𝜆ଵ𝒙𝟏

்𝒙𝟐 

𝜆ଶ𝒙𝟏
்𝒙𝟐 = 𝜆ଵ𝒙𝟏

்𝒙𝟐 

Transpose right side to left side 

(𝜆ଶ − 𝜆ଵ)𝒙𝟏
்𝒙𝟐 = 0 

From this  

𝜆ଶ − 𝜆ଵ = 0 

or 

𝒙𝟏
்𝒙𝟐 = 0 

In the case the eigen equation has no multiple root 

𝜆ଶ − 𝜆ଵ ≠ 0 

Then  

𝒙𝟏
்𝒙𝟐 = 0 

Product of 𝒙𝟏
்𝒙𝟐  is inner product of 𝒙𝟏 and 𝒙𝟐 . When 𝒙𝟏

்𝒙𝟐 =0, 𝒙𝟏 and 𝒙𝟐  are 

orthogonal each other 

We must consider the case of having multiple root separately. In the case of double root, 

the eigenvectors following the double roots is exist in a plane which is orthogonal to 

other eigenvectors. We can select any unit vector on the plane for a double root and can 

find orthogonal unit vector for the other double root. This method is named 

Gram-Schmidt orthogonalization.  In the case of higher-order multiple root, the space 

the eigenvectors following the multiple root exist orthogonal space to other eigenvectors. 

We can use Gram-Schmidt orthogonalization.  

 

Another issue we should consider is the case when the eigen equation has no solution. 

However, all symmetric matrix has solution. From this we can conclude that when a 

matrix is symmetric matrix, we can decompose the matrix as follow 

𝑨 = 𝜦𝒆𝒆் 

（𝒆 is matrix composed from unit vector of eigenvector, and  

𝜦 (lambda) = ൮

λଵ 0
0 λଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ λ୬

൲ 

More applicable expression is as follows 

𝑨 = 𝜆ଵ𝒆𝟏𝒆𝟏
் + 𝜆ଶ𝒆𝟐𝒆𝟐

் + ⋯ + 𝜆௣𝒆𝒑𝒆𝒑
் 

or 



𝑨 = ෍ 𝜆௜𝒆𝒊𝒆𝒊
்

௣

௜ୀଵ

 

𝒆𝒊: unit vector of eigenvector,  

𝒆𝒊 ⊥ 𝒆𝒋 
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We call decomposing of symmetric matrix to sum of symmetric matrixes produced from 

eigenvectors which orthogonal each other by this method as spectral decomposition.  

 

For understanding of specific protocol of spectral decomposition, we implement specific 

decomposition of following matrix. 

𝑨 = ൭
3 1 −1
1 5 −1

−1 −1 3
൱ 

𝑨 is a symmetric matrix. 

1．Eigen equation  

ቮ

(3 − 𝜆) 1 −1
1 (5 − 𝜆) −1

−1 −1 (3 − 𝜆)
ቮ = 0 

       (3 − 𝜆)(5 − 𝜆)(3 − 𝜆) + 1 + 1 − (3 − 𝜆) − (5 − 𝜆) − (3 − 𝜆) = 0 

36 − 36λ + 11𝜆ଶ − 𝜆ଷ = 0 

(𝜆 − 6)(𝜆 − 3)(𝜆 − 2) = 0 

𝜆ଵ = 6, 𝜆ଶ = 3, 𝜆ଷ = 2  

2. Eigenvector 

Eigenvector belonging  to 𝜆ଵ = 6  

൭
3 1 −1
1 5 −1

−1 −1 3
൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 6 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

3𝑥1 + 𝑥2 − 𝑥ଷ = 6𝑥1           i 

𝑥1 + 5𝑥2 − 𝑥ଷ = 6𝑥ଶ          ii  

−𝑥1 − 𝑥2 + 3𝑥ଷ = 6𝑥3          iii  

−3𝑥1 + 𝑥2 − 𝑥ଷ = 0            i’ 

𝑥1 − 𝑥2 − 𝑥ଷ = 0              ii’ 

−𝑥1 − 𝑥2 − 3𝑥ଷ = 0           iii’ 

−2𝑥1 − 2𝑥ଷ = 0                   i’+ii’  

−2𝑥2 − 4𝑥ଷ = 0                 ii’+iii’ 

𝑥1 = −𝑥ଷ 

𝑥ଶ = −2𝑥ଷ 



𝒆𝟏 = t ൭
1
2

−1
൱ 

Eigenvector belonging to 𝜆ଶ = 3  

൭
3 1 −1
1 5 −1

−1 −1 3
൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 3 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

3𝑥1 + 𝑥2 − 𝑥ଷ = 3𝑥1           i 

𝑥1 + 5𝑥2 − 𝑥ଷ = 3𝑥ଶ           ii 

−𝑥1 − 𝑥2 + 3𝑥ଷ = 3𝑥3         iii 

  𝑥2 − 𝑥ଷ = 0                  i’ 

𝑥1 + 2𝑥2 − 𝑥ଷ = 0             ii’ 

−𝑥1 − 𝑥2 = 0                 iii’ 

𝑥1 = −𝑥ଶ 

𝑥ଶ = 𝑥ଷ 

𝒆𝟐 = t ൭
1

−1
−1

൱ 

Eigenvector belonging to 𝜆ଷ = 2 

൭
3 1 −1
1 5 −1

−1 −1 3
൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 2 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

3𝑥1 + 𝑥2 − 𝑥ଷ = 2𝑥1           i 

𝑥1 + 5𝑥2 − 𝑥ଷ = 2𝑥ଶ           ii 

−𝑥1 − 𝑥2 + 3𝑥ଷ = 2𝑥3         iii 

𝑥1 + 𝑥2 − 𝑥ଷ = 0              i’ 

𝑥1 + 3𝑥2 − 𝑥ଷ = 0            ii’ 

−𝑥1 − 𝑥2 + 𝑥ଷ = 0            iii’ 

−2𝑥ଶ = 0                i’ −   ii’ 

𝑥ଶ = 0  

𝑥ଵ − 𝑥ଷ = 0            substitution of 𝑥ଶ = 0 in i’  

𝑥1 = 𝑥ଷ 

𝒆𝟐 = t ൭
1
0
1

൱ 

Unit vectors of each eigen vector 

𝒆𝟏 =

⎝

⎜
⎛

1

√6

2

√6

−1

√6⎠

⎟
⎞
, 𝒆𝟐 =

⎝

⎜
⎛

1

√3

−1

√3

−1

√3⎠

⎟
⎞

, 𝒆𝟑 = ൮

1

√2

0
1

√2

൲ 

Result of spectral decomposition.   



𝑨 = 6𝒆𝟏𝒆𝟏
் + 3𝒆𝟐𝒆𝟐

𝑻 + 2𝒆𝒏𝒆𝒏
் 

𝑨 = 6

⎝

⎜
⎜
⎜
⎛

1

√6
2

√6
−1

√6⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√6
2

√6
−1

√6⎠

⎟
⎟
⎟
⎞

்

+ 3

⎝

⎜
⎜
⎜
⎛

1

√3
−1

√3
−1

√3⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√3
−1

√3
−1

√3⎠

⎟
⎟
⎟
⎞

்

+ 2

⎝

⎜
⎛

1

√2
0
1

√2⎠

⎟
⎞

⎝

⎜
⎛

1

√2
0
1

√2⎠

⎟
⎞

்

 

Confirmation  

First term of right side 

6

⎝

⎜
⎜
⎜
⎛

1

√6
2

√6
−1

√6⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√6
2

√6
−1

√6⎠

⎟
⎟
⎟
⎞

்

= 6

⎝

⎜
⎜
⎜
⎛

1

√6
2

√6
−1

√6⎠

⎟
⎟
⎟
⎞

൬
1

√6

2

√6

−1

√6
൰ 

= 6

⎝

⎜
⎜
⎛

1

6

1

3
−

1

6
1

3

4

6
−

1

3

−
1

6
−

1

3

1

6 ⎠

⎟
⎟
⎞

= ൭
1 2 −1
2 4 −2

−1 −2 1
൱ 

Second term of right side 

3

⎝

⎜
⎜
⎜
⎛

1

√3
−1

√3
−1

√3⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√3
−1

√3
−1

√3⎠

⎟
⎟
⎟
⎞

்

= 3

⎝

⎜
⎜
⎜
⎛

1

√3

−
1

√3

−
1

√3⎠

⎟
⎟
⎟
⎞

൬
1

√3
−

1

√3
−

1

√3
൰ 

3

⎝

⎜
⎜
⎛

1

3
−

1

3
−

1

3

−
1

3

1

3

1

3

−
1

3

1

3

1

3 ⎠

⎟
⎟
⎞

= ൭
1 −1 −1

−1 1 1
−1 1 1

൱ 

Third term of right side 

2

⎝

⎜
⎛

1

√2
0
1

√2⎠

⎟
⎞

⎝

⎜
⎛

1

√2
0
1

√2⎠

⎟
⎞

்

= 2

⎝

⎜
⎛

1

√2
0
1

√2⎠

⎟
⎞

൬
1

√2
0

1

√2
൰ 



= 2

⎝

⎜
⎛

1

2
0

1

2
0 0 0
1

2
0

1

2⎠

⎟
⎞

= ൭
1 0 1
0 0 0
1 0 1

൱ 

Right side 

൭
1 2 −1
2 4 −2

−1 −2 1
൱ + ൭

1 −1 −1
−1 1 1
−1 1 1

൱ + ൭
1 0 1
0 0 0
1 0 1

൱ = ൭
3 1 −1
1 5 −1

−1 −1 3
൱ 

 

Quasi spectral decomposition 

Strictly, spectra decomposition means decomposition of symmetric matirix. Asymmetric 

matrixes can also be decomposed to sum of products of eigenvalue and matrix similarly 

as spectral decomposition of symmetric matrix. This decomposition is included in 

spectral decomposition in several text books.  However, it cannot be expressed only by 

eigenvectors and result of decomposition is different from spectral decomposition, 

because we cannot expect complete orthogonality among eigenvectors of asymmetric. 

The author does not know how we call the decomposition of asymmetric matrix.  We 

call the decomposition asymmetric matrix as quasi-spectral decomposition.  

 

Let presume asymmetric matrix A can be diagonalized by P  

𝑷ିଵ𝑨𝑷 = 𝜦 = ൮

𝜆ଵ 0
0 𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜆௡

൲ 

𝑷𝑷ିଵ𝑨𝑷𝑷ିଵ = 𝑨 

𝑨 = 𝑷𝜦𝑷ିଵ = 𝑷 ൮

𝜆ଵ 0
0 𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜆௡

൲ 𝑷ିଵ 

Put 𝑷 ∶ = ൮

𝑝ଵଵ 𝑝ଵଶ

𝑝ଶଵ 𝑝ଶଶ

⋯ 𝑝ଵ௡

⋯ 𝑝ଶ௡

⋮ ⋮
𝑝௡ଵ 𝑝௡ଶ

⋱ ⋮
⋯ 𝑝௡௡

൲ and 𝑷ିଵ = ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ 

൮

𝑝ଵଵ 𝑝ଵଶ

𝑝ଶଵ 𝑝ଶଶ

⋯ 𝑝ଵ௡

⋯ 𝑝ଶ௡

⋮ ⋮
𝑝௡ଵ 𝑝௡ଶ

⋱ ⋮
⋯ 𝑝௡௡

൲ ൮

𝜆ଵ 0
0 𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜆௡

൲ ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ 

= ൮

𝜆ଵ𝑝ଵଵ 𝜆ଶ𝑝ଵଶ

𝜆ଵ𝑝ଶଵ 𝜆ଶ𝑝ଶଶ

⋯ 𝜆௡𝑝ଵ௡

⋯ 𝜆௡𝑝ଶ௡

⋮ ⋮
𝜆ଵ𝑝௡ଵ 𝜆ଶ𝑝௡ଶ

⋱ ⋮
⋯ 𝜆௡𝑝௡௡

൲ ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ 



= ൮

𝜆ଵ𝑝ଵଵ𝑞ଵଵ + 𝜆ଶ𝑝ଵଶ𝑞ଶଵ + ⋯ + 𝜆௡𝑝ଵ௡𝑞௡ଵ 𝜆ଵ𝑝ଵଵ𝑞ଵଶ + 𝜆ଶ𝑝ଵଶ𝑞ଶଶ + ⋯ + 𝜆௡𝑝ଵ௡𝑞௡ଶ

𝜆ଵ𝑝ଶଵ𝑞ଵଵ + 𝜆ଶ𝑝ଶଶ𝑞ଶଵ + ⋯ + 𝜆௡𝑝ଶ௡𝑞௡ଵ 𝜆ଵ𝑝ଶଵ𝑞ଵଶ + 𝜆ଶ𝑝ଶଶ𝑞ଶଶ + ⋯ + 𝜆௡𝑝ଶ௡𝑞௡ଶ

⋯ 𝜆ଵ𝑝ଵଵ𝑞ଵ௡ + 𝜆ଶ𝑝ଵଶ𝑞ଶ௡ + ⋯ + 𝜆௡𝑝ଵ௡𝑞௡௡

⋯ 𝜆ଵ𝑝ଶଵ𝑞ଵ௡ + 𝜆ଶ𝑝ଶଶ𝑞ଶ௡ + ⋯ + 𝜆௡𝑝ଶ௡𝑞௡௡

⋮ ⋮
𝜆ଵ𝑝௡ଵ𝑞ଵଵ + 𝜆ଶ𝑝௡ଶ𝑞ଶଵ + ⋯ + 𝜆௡𝑝௡௡𝑞௡ଵ 𝜆ଵ𝑝௡ଵ𝑞ଵଶ + 𝜆ଶ𝑝௡ଶ𝑞ଶଶ + ⋯ + 𝜆௡𝑝௡௡𝑞௡ଶ

⋱ ⋮
⋯ 𝜆ଵ𝑝௡ଵ𝑞ଵ௡ + 𝜆ଶ𝑝௡ଶ𝑞ଶ௡ + ⋯ + 𝜆௡𝑝௡௡𝑞௡௡

൲ 

= 𝜆ଵ ൮

𝑝ଵଵ𝑞ଵଵ 𝑝ଵଵ𝑞ଵଶ

𝑝ଶଵ𝑞ଵଵ 𝑝ଶଵ𝑞ଵଶ

⋯ 𝑝ଵଵ𝑞ଵ௡

⋯ 𝑝ଶଵ𝑞ଵ௡

⋮ ⋮
𝑝௡ଵ𝑞ଵଵ 𝑝௡ଵ𝑞ଵଶ

⋱ ⋮
⋯ 𝑝௡ଵ𝑞ଵ௡

൲ + 𝜆ଶ ൮

𝑝ଵଶ𝑞ଶଵ 𝑝ଵଶ𝑞ଶଶ

𝑝ଶଶ𝑞ଶଵ 𝑝ଶଶ𝑞ଶଶ

⋯ 𝑝ଵଶ𝑞ଶ௡

⋯ 𝑝ଶଶ𝑞ଶ௡

⋮ ⋮
𝑝௡ଶ𝑞ଶଵ 𝑝௡ଶ𝑞ଶଶ

⋱ ⋮
⋯ 𝑝௡ଶ𝑞ଶ௡

൲ + ⋯ + 𝜆௡ ൮

𝑝ଵ௡𝑞௡ଵ 𝑝ଵ௡𝑞௡ଶ

𝑝ଶ௡𝑞௡ଵ 𝑝ଶ௡𝑞௡ଶ

⋯ 𝑝ଵ௡𝑞௡௡

⋯ 𝑝ଶ௡𝑞௡௡

⋮ ⋮
𝑝௡௡𝑞௡ଵ 𝑝௡௡𝑞௡ଶ

⋱ ⋮
⋯ 𝑝௡௡𝑞௡௡

൲ 

൮

𝑝ଵଵ𝑞ଵଵ 𝑝ଵଵ𝑞ଵଶ

𝑝ଶଵ𝑞ଵଵ 𝑝ଶଵ𝑞ଵଶ

⋯ 𝑝ଵଵ𝑞ଵ௡

⋯ 𝑝ଶଵ𝑞ଵ௡

⋮ ⋮
𝑝௡ଵ𝑞ଵଵ 𝑝௡ଵ𝑞ଵଶ

⋱ ⋮
⋯ 𝑝௡ଵ𝑞ଵ௡

൲ = ൮

𝑝ଵଵ 0
𝑝ଶଵ 0

⋯ 0
⋯ 0

⋮ ⋮
𝑝௡ଵ 0

⋱ ⋮
⋯ 0

൲ ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ 

൮

𝑝ଵଶ𝑞ଶଵ 𝑝ଵଶ𝑞ଶଶ

𝑝ଶଶ𝑞ଶଵ 𝑝ଶଶ𝑞ଶଶ

⋯ 𝑝ଵଶ𝑞ଶ௡

⋯ 𝑝ଶଶ𝑞ଶ௡

⋮ ⋮
𝑝௡ଶ𝑞ଶଵ 𝑝௡ଶ𝑞ଶଶ

⋱ ⋮
⋯ 𝑝௡ଶ𝑞ଶ௡

൲ = ൮

0 𝑝ଵଶ

0 𝑝ଶଶ

⋯ 0
⋯ 0

⋮ ⋮
0 𝑝௡ଶ

⋱ ⋮
⋯ 0

൲ ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ 

൮

𝑝ଵ௡𝑞௡ଵ 𝑝ଵ௡𝑞௡ଶ

𝑝ଶ௡𝑞௡ଵ 𝑝ଶ௡𝑞௡ଶ

⋯ 𝑝ଵ௡𝑞௡௡

⋯ 𝑝ଶ௡𝑞௡௡

⋮ ⋮
𝑝௡௡𝑞௡ଵ 𝑝௡௡𝑞௡ଶ

⋱ ⋮
⋯ 𝑝௡௡𝑞௡௡

൲ = ൮

0 0
0 0

⋯ 𝑝ଵ௡

⋯ 𝑝ଶ௡

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝑝௡௡

൲ ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ 

∴ 𝑨 = 𝜆ଵ ൮

𝑝ଵଵ 0
𝑝ଶଵ 0

⋯ 0
⋯ 0

⋮ ⋮
𝑝௡ଵ 0

⋱ ⋮
⋯ 0

൲ ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ + 𝜆ଶ ൮

0 𝑝ଵଶ

0 𝑝ଶଶ

⋯ 0
⋯ 0

⋮ ⋮
0 𝑝௡ଶ

⋱ ⋮
⋯ 0

൲ ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ + ⋯

+ 𝜆௡ ൮

0 0
0 0

⋯ 𝑝ଵ௡

⋯ 𝑝ଶ௡

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝑝௡௡

൲ ൮

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ

⋯ 𝑞ଵ௡

⋯ 𝑞ଶ௡

⋮ ⋮
𝑞௡ଵ 𝑞௡ଶ

⋱ ⋮
⋯ 𝑞௡௡

൲ 

 

This is quasi spectral decomposition. 

An example of quasi spectral decomposition (This example is used in V-2-2. 

Diagonalization) 

𝑨 = ൭
8 5 7

−1 2 −1
−3 −3 −2

൱ 

Change to unit vector 

𝑷 =

⎝

⎜
⎜
⎜
⎛

3

√11

1

√2

1

√2

−
1

√11
−

1

√2
0

−
1

√11
0 −

1

√2⎠

⎟
⎟
⎟
⎞

 

 

 

 



𝑷ି𝟏 = ቌ−
√11 √11 √11

√2 −2√2 −√2

−√2 −√2 −2√2

ቍ 

𝑷𝟏 =

⎝

⎜
⎜
⎜
⎛

3

√11
0 0

−
1

√11
0 0

−
1

√11
0 0

⎠

⎟
⎟
⎟
⎞

, 𝑷𝟐 =

⎝

⎜
⎛

0
1

√2
0

0 −
1

√2
0

0 0 0⎠

⎟
⎞

, 𝑷𝟑 =

⎝

⎜
⎛

0 0
1

√2
0 0 0

0 0 −
1

√2⎠

⎟
⎞

 

𝑷 = 𝑷𝟏 + 𝑷𝟐 + 𝑷𝟑 

𝑷𝟏𝑷ି𝟏 =

⎝

⎜
⎜
⎜
⎛

3

√11
0 0

−
1

√11
0 0

−
1

√11
0 0

⎠

⎟
⎟
⎟
⎞

ቌ−
√11 √11 √11

√2 −2√2 −√2

−√2 −√2 −2√2

ቍ = ൭
3 3 3

−1 −1 −1
−1 −1 −1

൱ 

𝑷𝟐𝑷ି𝟏 =

⎝

⎜
⎛

0
1

√2
0

0 −
1

√2
0

0 0 0⎠

⎟
⎞

ቌ−
√11 √11 √11

√2 −2√2 −√2

−√2 −√2 −2√2

ቍ = ൭
−1 −2 −1
1 2 1
0 0 0

൱ 

𝑷𝟑𝑷ି𝟏 =

⎝

⎜
⎛

0 0
1

√2
0 0 0

0 0 −
1

√2⎠

⎟
⎞

ቌ−
√11 √11 √11

√2 −2√2 −√2

−√2 −√2 −2√2

ቍ = ൭
−1 −1 −2
0 0 0
1 1 2

൱ 

𝑨 = 3𝑷𝟏𝑷ି𝟏 + 4𝑷𝟐𝑷ି𝟏 + 1𝑷𝟑𝑷ି𝟏 

Confirmation 

𝑨 = ൭
8 5 7

−1 2 −1
−3 −3 −2

൱ 

3𝑷𝟏𝑸 + 4𝑷𝟐𝑸 + 1𝑷𝟑𝑸 

= 4 ൭−
3 3 3
1 −1 −1

−1 −1 −1
൱ + 3 ൭

−1 −2 −1
1 2 1
0 0 0

൱ + +1 ൭
−1 −1 −2
0 0 0
1 1 2

൱ 

= ൭
12 − 3 − 1 12 − 6 − 1 12 − 3 − 2
−4 + 3 + 0 −4 + 6 + 0 −4 + 3 + 0
−4 + 0 + 1 −4 + 0 + 1 −4 + 0 + 2

൱ 

= ൭
8 5 7

−1 2 −1
−3 −3 −2

൱ 

𝑨𝟐 = ൭
8 5 7

−1 2 −1
−3 −3 −2

൱ ൭
8 5 7

−1 2 −1
−3 −3 −2

൱ = ൭
64 − 5 − 21 40 + 10 − 21 56 − 5 − 14
−8 − 2 + 3 −5 + 4 + 3 −7 − 2 + 2

−24 + 3 + 6 −15 − 6 + 6 −21 + 3 + 4
൱ 



= ൭
38 29 37
−7 2 −7

−15 −15 −14
൱ 

4ଶ𝑷𝟏𝑸 + 3ଶ𝑷𝟐𝑸 + 1ଶ𝑷𝟑𝑸 

= 16 ൭−
3 3 3
1 −1 −1

−1 −1 −1
൱ + 9 ൭

−1 −2 −1
1 2 1
0 0 0

൱ + 1 ൭
−1 −1 −2
0 0 0
1 1 2

൱ 

= ൭
48 − 9 − 1 48 − 18 − 1 48 − 9 − 2

−16 + 9 + 0 −16 + 18 + 0 −16 + 9 + 0
−16 + 0 + 1 −16 + 0 + 1 −16 + 0 + 2

൱ 

= ൭
38 29 37
−7 2 −7

−15 −15 −14
൱  

We can calculate power of Asymmetric matrix by following formula when the matrix can 

be diagonalized.  

𝑨௠ = ෍ 𝜆௞
௠𝑷𝒌𝑷ି𝟏

𝒏

𝒌ୀ𝟏

 

 

 


