
V-2-6. Maximum and minimum 

V-2-6-1. Maximum and minimum in quadratic from maximum and minimum 

 

When the quadratic form is defined by a positive real number as follow, we can draw the 

locus of arrow head of the vector 𝒙  as shown in V-2-3. “Diagonalization and spectral 

decomposition of quadratic from”. This means that the absolute value (length) of vector 

is restricted by the equation 

𝒙𝑻𝑨𝒙 = 𝑑 

Depending on the shape of quadratic form, the length of the vector has extreme value in 

several cases.  In the case when the matrix is positive definite, the shape of the locus is 

hyperelliptic. The longest vector is the longest radius, and the maximum value of length 

of vector is length of longest radius. The shortest vector is shortest radius, and the 

minimum value of the length of vector is length of shortest radius. In the case of 

indefinite, shape of the locus is not simple, and we cannot discuss maximum and 

minimum of the length of vector without other domain of definition in many cases. 

When  

𝒙𝑻𝑨𝒙 = 𝟏 

And  

𝒙𝑻𝑨𝒙 = 𝑿𝑻𝚲𝑿 

𝚲 = ൮

𝜆ଵ 0
0 𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜆

൲ 

𝜆ଵ ≥ 𝜆ଶ ≥ ⋯ ≥ 𝜆 > 0 

𝑋ଵ
ଶ

ቆ
1

ඥ𝜆ଵ

ቇ

ଶ +
𝑋ଶ

ଶ

ቆ
1

ඥ𝜆ଶ

ቇ

ଶ + ⋯ +
𝑋

ଶ

ቆ
1

ඥ𝜆

ቇ

ଶ = 1 

This is equation of hyperelliptic. Figure 58 is an example elliptic   

𝒙𝑻𝑨𝒙 = 𝟏 

And  

𝒙𝑻𝑨𝒙 = 𝑿𝑻 ൬
𝜆ଵ 0
0 𝜆ଶ

൰ 𝑿 

 

𝑋ଵ
ଶ

ቆ
1

ඥ𝜆ଵ

ቇ

ଶ +
𝑋ଶ

ଶ

ቆ
1

ඥ𝜆ଶ

ቇ

ଶ = 1 

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 58. An example of elliptic 

 

 

From this figure, we can understand that the maximum length of vector, the absolute 

value of 𝒙 is  ଵ

ඥఒమ
 and the minimum length of vector 𝒙 is ଵ

ඥఒభ
 when the matrix is 

positive definite.  

From this, we can conclude that the minimum and maximum of following value is 

smallest eigen value and largest eigenvalue, when matrix 𝑨 is positive definite. 

𝜆௦௦௧ ≤
𝒙𝑻𝑨𝒙

𝒙𝑻𝒙
≤ 𝜆௦௧𝑦 

The author supposes that many readers can accept upper explanation intuitively. 

However, some readers cannot accept the explanation because of its too simple logic. For 

such readers, the author adds supplemental explanation.   

Meaning of 𝒙𝑻𝑨𝒙

𝒙𝑻𝒙
 is ratio of 𝒙𝑻𝑨𝒙 and 𝒙𝑻𝒙.  The numerator, 𝒙𝑻𝑨𝒙, is magnitude of 

hyperelliptic, and 𝒙𝑻𝒙 is square of length of vector 𝒙. We are discussing the maximum 

and minimum value of the ratio and when the ratio is maximum and minimum value. 

Here, 𝑨 is symmetric and positive definite.  

Diagonalization     

𝑷ିଵ𝑨𝑷 = 𝚲 

𝚲 = ൮

𝜆ଵ 0
0 𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜆

൲ 

𝑋ଵ =
1

ඥ𝜆ଵ

 

𝑋ଶ =
1

ඥ𝜆ଶ

 

ଵ 

ଶ 

ଵ 

ଶ 



𝜆ଵ ≥ 𝜆ଶ ≥ ⋯ ≥ 𝜆 > 0 

𝑨
ଵ
ଶ = 𝑷𝚲

ଵ
ଶ𝑷ିଵ 

、𝑨 is symmetric 

𝑷ିଵ = 𝑷் 

𝑩
ଵ
ଶ = 𝑷𝚲

ଵ
ଶ𝑷் 

Here 

𝑿 = 𝑷்𝒙 

𝒙 = 𝑷𝑿 

𝒙்𝑩𝒙

𝒙்𝒙
=

𝒙்𝑩𝒙

(𝑷𝑿)்𝑷𝑿
=

𝒙்𝑩
ଵ
ଶ𝑩

ଵ
ଶ𝒙

𝑿்𝑷்𝑷𝑿
=

𝒙்𝑩
ଵ
ଶ𝑩

ଵ
ଶ𝒙

𝑿்𝑿
=

𝒙்𝑷𝚲
ଵ
ଶ𝑷்𝑷𝚲

ଵ
ଶ𝑷்𝒙

𝑿்𝑿
=

𝒙்𝑷𝚲
ଵ
ଶ𝚲

ଵ
ଶ𝑷்𝒙

𝑿்𝑿
 

=
𝒙்𝑷𝚲𝑷்𝒙

𝑿்𝑿
=

𝑿்𝚲𝑿

𝑿்𝑿
 

𝑿்𝚲𝑿

𝑿்𝑿
=

∑ 𝜆𝑋
ଶ𝒑

𝒊ୀ𝟏

∑ 𝑋
ଶ𝒑

𝒊ୀ𝟏

 

𝜆ଵ ≥ 𝜆ଶ ≥ ⋯ ≥ 𝜆 > 0  

∑ 𝜆𝑦
ଶ𝒑

𝒊ୀ𝟏

∑ 𝑦
ଶ𝒑

𝒊ୀ𝟏

≤ 𝜆ଵ

∑ 𝑦
ଶ𝒑

𝒊ୀ𝟏

∑ 𝑦
ଶ𝒑

𝒊ୀ𝟏

= 𝜆ଵ 

Spectral decomposition 

𝑨 = 𝜆ଵ𝒆𝟏𝒆𝟏
் + 𝜆ଶ𝒆𝟐𝒆𝟐

் + ⋯ + 𝜆𝒆𝒑𝒆𝒑
் 

𝒙்𝑨𝒙＝𝜆ଵ𝒙்𝒆𝟏𝒆𝟏
்𝒙 + 𝜆ଶ𝒙்𝒆𝟐𝒆𝟐

்𝒙 + ⋯ + 𝜆𝒙்𝒆𝒑𝒆𝒑
்𝒙 

Assigning 𝒆ଵ to 𝒙 

𝒆ଵ
்𝑨𝒆＝𝜆ଵ𝒆ଵ

்𝒆𝟏𝒆𝟏
்𝒆ଵ + 𝜆ଶ𝒆ଵ

்𝒆𝟐𝒆𝟐
்𝒆ଵ + ⋯ + 𝜆𝒆ଵ

்𝒆𝒑𝒆𝒑
்𝒆ଵ 

𝒆  and 𝒆 is orthogonal each other 

𝒆
்𝒆 = 0    𝑖 ≠ 𝑗 

𝒆
்𝒆 = 1 

𝒆ଵ
்𝑨𝒆＝𝜆ଵ𝒆ଵ

்𝒆𝟏𝒆𝟏
்𝒆ଵ = 𝜆ଵ 

Conclusion 

When symmetric matrix 𝑨 is positive definite 

 

𝐦𝐚𝐱
𝒙ஷ𝟎

𝒙்𝑨𝒙

𝒙்𝒙
= 𝜆ଵ 

Similarly,  

𝐦𝐢𝐧
𝒙ஷ𝟎

𝒙்𝑨𝒙

𝒙்𝒙
= 𝜆 



𝚲 = ൮

𝜆ଵ 0
0 𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜆

൲ 

𝜆ଵ ≥ 𝜆ଶ ≥ ⋯ ≥ 𝜆 > 0 
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V-2-6-2. Cauchy Schwarz’s inequation 

So far, we do not know how to use this conclusion. We will use this in later paragraph of 

this text book. Before that, the author adds several complemental interpretations for 

understanding or the meaning of this inequality. 

 

Cauchy Schwarz’s inequation is often used in optimization. This inequation has various 

forms, though most general expression is as follow. 

൫𝑎ଵ𝑏ଵ + 𝑎ଶ𝑏ଶ + ⋯ + 𝑎𝑏൯
ଶ

≤ ൫𝑎ଵ
ଶ + 𝑎ଶ

ଶ + ⋯ + 𝑎
ଶ൯൫𝑏ଵ

ଶ + 𝑏ଶ
ଶ + ⋯ + 𝑏

ଶ൯ 

Formula 64 

The most simple and elegant proof of the inequality is to change the inequation to vector 

form. 

Denoting vector 𝒂 and  𝒃 

𝒂 = ൮

𝑎ଵ

𝑎ଶ

⋮
𝑎

൲ ,    𝒃 = ൮

𝑏ଵ

𝑏ଶ

⋮
𝑏

൲ 

Inner products of the vectors 

𝒂 ∙  𝒃 = |𝒂|| 𝒃| cos 𝜃 

−
𝜋

2
≤ 𝜃 ≤

𝜋

2
 

0 ≤ cos 𝜃 ≤ 1 

Then  

𝒂 ∙  𝒃 ≤ |𝒂||𝒃|              i 

𝒂 ∙  𝒃 =  𝒂𝒃 = (𝑎ଵ 𝑎ଶ
⋯ 𝑎) ൮

𝑏ଵ

𝑏ଶ

⋮
𝑏

൲ = 𝑎ଵ𝑏ଵ + 𝑎ଶ𝑏ଶ + ⋯ + 𝑎𝑏 

|𝒂| = ට𝑎ଵ
ଶ + 𝑎ଶ

ଶ + ⋯ + 𝑎
ଶ, |𝒃| = ට𝑏ଵ

ଶ + 𝑏ଶ
ଶ + ⋯ + 𝑏

ଶ 

Put these equations to i 



𝑎ଵ𝑏ଵ + 𝑎ଶ𝑏ଶ + ⋯ + 𝑎𝑏 ≤ ට𝑎ଵ
ଶ + 𝑎ଶ

ଶ + ⋯ + 𝑎
ଶට𝑏ଵ

ଶ + 𝑏ଶ
ଶ + ⋯ + 𝑏

ଶ 

 

Raise both side to the second power 

൫𝑎ଵ𝑏ଵ + 𝑎ଶ𝑏ଶ + ⋯ + 𝑎𝑏൯
ଶ

≤ ൫𝑎ଵ
ଶ + 𝑎ଶ

ଶ + ⋯ + 𝑎
ଶ൯൫𝑏ଵ

ଶ + 𝑏ଶ
ଶ + ⋯ + 𝑏

ଶ൯ 

This is very sophisticated proof, as it is used only a trivial rule that inner products of the 

vectors are smaller than products of length of vectors.  

 

Example of expansion of Cauchy Schwarz’s inequation (1) 

Letting 

𝒂 = ൬𝑩
ଵ
ଶ𝜶൰ 

𝒃 = ൬𝑩ି
ଵ
ଶ𝜷൰ 

B is symmetric matrix 

 Put 𝒂 and 𝒃 in Cauchy Schwarz’s inequation. 

(𝒂்𝒂)(𝒃்𝒃) ≥ (𝒂்𝒃)𝟐 

Left side = ൬𝑩
ଵ
ଶ𝜶൰

்

൬𝑩
ଵ
ଶ𝜶൰ ൬𝑩ି

ଵ
ଶ𝜷൰

்

൬𝑩ି
ଵ
ଶ𝜷൰ 

= ቆ𝜶்𝑩
ଵ
ଶ

்

𝑩
ଵ
ଶ𝜶ቇ ቆ𝜷ᇱ𝑩ି

ଵ
ଶ

𝑻

𝑩ି
ଵ
ଶ𝜷ቇ 

= (𝜶்𝑩𝜶)(𝜷்𝑩ି𝟏𝜷) 

Right side = ൬𝑩
ଵ
ଶ𝜶൰

்

൬𝑩ି
ଵ
ଶ𝜷൰

்

൬𝑩
ଵ
ଶ𝜶൰ ൬𝑩ି

ଵ
ଶ𝜷൰ 

= ቆ𝜶்𝑩
ଵ
ଶ

்

𝑩ି
ଵ
ଶ𝜷ቇ ቆ𝜶்𝑩

ଵ
ଶ

்

𝑩ି
ଵ
ଶ𝜷ቇ 

= (𝜶்𝑰𝜷)(𝜶்𝑰𝜷) 

= (𝜶்𝜷)ଶ 

(𝜶்𝑩𝜶)(𝜷்𝑩ି𝟏𝜷) ≥ (𝜶𝑻𝜷)ଶ 

When  

𝑩
ଵ
ଶ𝜶 = 𝑐𝑩ି

ଵ
ଶ𝜷 

(𝜶்𝑩𝜶)(𝜷்𝑩ି𝟏𝜷) = (𝜶𝑻𝜷)ଶ 

Formula 65 

In this inequation, 𝜶்𝑩𝜶 is scalar and 𝑩 is positive definite. We can divide both sides 

without change of inequality sign.    



(𝜶்𝜷)ଶ

𝜶்𝑩𝜶
≤ 𝜷்𝑩ି𝟏𝜷 

By this transformation, we can separate the inequality to two parts. Left side is function 

of 𝜶, and right side is function of 𝜷. 

𝐅(𝜶) =
(𝜶்𝜷)ଶ

𝜶்𝑩𝜶
 

max𝐅(𝜶)
𝜶ஷ

= 𝜷்𝑩ି𝟏𝜷 

When 

𝑩
ଵ
ଶ𝜶 = 𝑐𝑩ି

ଵ
ଶ𝜷 

𝜶 = 𝑐𝑩ିଵ𝜷 

For clear specification of variable, we denote 𝜶 as 𝒙   

We presume that symmetric matrix 𝑩 is positive definite. 

max
௫ஷ

(𝒙ᇱ𝜷)ଶ

𝒙ᇱ𝑩𝒙
= 𝜷ᇱ𝑩ି𝟏𝜷 

 When  

𝒙 = 𝑐𝑩ିଵ𝜷 

 

Example of expansion of Cauchy Schwarz’s inequation (2) 

Letting 

𝒂 = ൬𝑭
ଵ
ଶ𝜶൰ 

𝒃 = ൬𝑮
ଵ
ଶ𝜶൰ 

B is symmetric matrix 

 Put 𝒂 and 𝒃 in Cauchy Schwarz’s inequation. 

(𝒂்𝒂)(𝒃்𝒃) ≥ (𝒂்𝒃)𝟐 

Left side = ൬𝑭
ଵ
ଶ𝜶൰

்

൬𝑭
ଵ
ଶ𝜶൰ ൬𝑮ି

ଵ
ଶ𝜶൰

்

൬𝑮ି
ଵ
ଶ𝜶൰ 

= ቆ𝜶்𝑭
ଵ
ଶ

்

𝑭
ଵ
ଶ𝜶ቇ ቆ𝜶𝑻𝑮

ଵ
ଶ

𝑻

𝑮
ଵ
ଶ𝜶ቇ 

= (𝜶்𝑭𝜶)(𝜶்𝑮𝜶) 

Right side = ൬𝑮
ଵ
ଶ𝜶൰

்

൬𝑭
ଵ
ଶ𝜶൰ 

= 𝜶்𝑮
ଵ
ଶ

்

𝑭
ଵ
ଶ𝜶 



Combining both side 

(𝜶்𝑭𝜶)(𝜶்𝑮𝜶) ≥ 𝜶்𝑮
ଵ
ଶ

்

𝑭
ଵ
ଶ𝜶 

Dividing both side by (𝜶்𝑮𝜶)𝟐  ((𝜶்𝑮𝜶)𝟐 > 𝟎) 

(𝜶்𝑭𝜶)

(𝜶்𝑮𝜶)
≥

𝜶்𝒈
ଵ
ଶ

்

𝑭
ଵ
ଶ𝜶

(𝜶்𝑮𝜶)𝟐
 

Condition of equality 

𝒂 = 𝑐𝒃 

( 𝒂 = ቀ𝑭
భ

మ𝜶ቁ,  𝒃 = ቀ𝑮
భ

మ𝜶ቁ ) 

𝑭
ଵ
ଶ𝜶 = 𝑐𝑮

ଵ
ଶ𝜶 

When  

𝑭
ଵ
ଶ𝜶 = 𝑐𝑮

ଵ
ଶ𝜶 

(𝜶்𝑭𝜶)

(𝜶்𝑮𝜶)
 is minimum value 

(𝜶்𝑭𝜶)

(𝜶்𝑮𝜶)
=

𝜶்𝒈
ଵ
ଶ

்

𝑭
ଵ
ଶ𝜶

(𝜶்𝑮𝜶)𝟐
 

  

(𝜶்𝑮𝜶)

(𝜶்𝑭𝜶)
 is maximum value 

(𝜶்𝑮𝜶)

(𝜶்𝑭𝜶)
=

(𝜶்𝑮𝜶)𝟐

𝜶்𝒈
ଵ
ଶ

்

𝑭
ଵ
ଶ𝜶

 

V-2-6-3. Method of Lagrange multiplier 

The exemplified two cases of expansion of Cauchy Schwarz’s inequation in upper 

paragraphs. Those cases can be interpreted as particular cases of method of Lagrange 

multiplier. Method of Lagrange multipliers is a method to calculate maximum or 

minimum value under constrained conditions. Figure 59 is illustration of theoretical 

background of method of Lagrange multipliers.  



               
        Fig. 59. Relation between minimizing function and constrained condition. 

 

Red line is constrained condition 𝑔(𝑥ଵ ⋯ 𝑥) = 0, and shapes written by blue line is 

target function of minimization  𝑓(𝑥ଵ ⋯ 𝑥) = 𝑐 . When we increase 𝑐, the area 

enclosed by blue line expand and the blue line will contact red line at a particular 𝑐. 

After that blue line will have intersections with red line. When blue line has 

intersections or tangent point, blue line can satisfy the constrained condition. The shape 

of the blue line is not simple and there will be several tangent points between blue line 

and red line with increase of c, however c at first tangent point is minimum c which 

satisfy constrained condition. In the case, when we consider maximization of function 

𝑓(𝑥ଵ ⋯ 𝑥) = 𝑐. we put 𝑓(𝑥ଵ ⋯ 𝑥) = 𝑐 inside of 𝑔(𝑥ଵ ⋯ 𝑥) = 0. The last point 

where blue line and red line has tangent point will give the maximum value of c. At 

tangent point blue line and red line share tangent plane  (∆𝑓 = 𝜆∆𝑔)  and normal 

vector( ∇𝑓 = 𝜆∇𝑔). Normal vector is expressing gradient of hyperplane and the other 

name of the normal vector is gradient vector of the plane.  

Gradient of function 𝑓(𝑥ଵ ⋯ 𝑥) can be obtained by partial differentiation. 

∇𝑓 =
𝜕𝑓(𝒙)

𝜕𝒙
=

⎝

⎜⎜
⎛

𝜕𝑓(𝑥ଵ ⋯ 𝑥)

𝜕𝑥ଵ

⋮
𝜕𝑓(𝑥ଵ ⋯ 𝑥)

𝜕𝑥 ⎠

⎟⎟
⎞

 

𝜆∇𝑔 = 𝜆
𝜕𝑔(𝒙)

𝜕𝒙
= 𝜆

⎝

⎜⎜
⎛

𝜕𝑔(𝑥ଵ ⋯ 𝑥)

𝜕𝑥ଵ

⋮
𝜕𝑔(𝑥ଵ ⋯ 𝑥)

𝜕𝑥 ⎠

⎟⎟
⎞

 

For sharing normal vector 

∇𝑓 = 𝜆∇𝑔 



∇𝑓 − 𝜆∇𝑔 = 0 

𝜕𝑓(𝒙)

𝜕𝒙
− 𝜆

𝜕𝑔(𝒙)

𝜕𝒙
= 0 

𝜕൫𝑓(𝒙) − 𝜆𝑔(𝒙)൯

𝜕𝒙
= 0 

Denoting 𝐿(𝒙, 𝜆) = 𝑓(𝒙) − 𝜆𝑔(𝒙) 

General description of method of Lagrange multiplier is as follow. 

𝜕𝐿(𝒙, 𝜆)

𝜕(𝒙, 𝜆)
=

⎝

⎜
⎜
⎜
⎜
⎛

𝜕𝐿(𝒙, 𝜆)

𝜕𝑥ଵ

⋮
𝜕𝐿(𝒙, 𝜆)

𝜕𝑥

𝜕𝐿(𝒙, 𝜆)

𝜕𝜆 ⎠

⎟
⎟
⎟
⎟
⎞

 

Here  

𝐿(𝒙, 𝜆) = 𝑓(𝒙) − 𝜆𝑔(𝒙) 

𝒙 = ൭

𝒙𝟏

⋮
𝒙𝒑

൱ 
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Example solutions 

1. Obtain extreme value of 𝑥ଵ + 𝑥ଶ + 𝑥ଷ, when 𝑥ଵ
ଶ + 𝑥ଶ

ଶ + 𝑥ଷ
ଶ = 1 

Extreme value of 𝑓(𝑥ଵ 𝑥ଶ 𝑥ଷ)=𝑥ଵ + 𝑥ଶ + 𝑥ଷ 

Subject to 𝑔(𝑥ଵ 𝑥ଶ 𝑥ଷ)=𝑥ଵ
ଶ + 𝑥ଶ

ଶ + 𝑥ଷ
ଶ − 1 = 0 

𝒙 = ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆) =  𝑥ଵ + 𝑥ଶ + 𝑥ଷ − 𝜆(𝑥ଵ
ଶ + 𝑥ଶ

ଶ + 𝑥ଷ
ଶ − 1) 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆)

𝜕𝒙
 

 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆)

𝜕𝑥ଵ
= 1 − 2𝜆𝑥ଵ = 0             i 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆)

𝜕𝑥ଶ
= 1 − 2𝜆𝑥ଶ = 0            ii 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆)

𝜕𝑥ଷ
= 1 − 2𝜆𝑥ଷ = 0             iii 



𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆)

𝜕𝜆
= −(𝑥ଵ

ଶ + 𝑥ଶ
ଶ + 𝑥ଷ

ଶ − 1) = 0             iv 

From i, ii and iii,  

𝑥ଵ =
1

2𝜆
             i′ 

𝑥ଶ =
1

2𝜆
             ii′ 

𝑥ଷ =
1

2𝜆
             iii′ 

Put i’, ii’ and iii’ in iv 

൬
1

2𝜆
൰

ଶ

+ ൬
1

2𝜆
൰

ଶ

+ ൬
1

2𝜆
൰

ଶ

− 1 = 0 

3

4𝜆ଶ
= 1 

𝜆ଶ =
3

4
 

𝜆 = ±
√3

2
 

Put this in i’, ii’ and iii’ 

 

𝑥ଵ = ±
2

2√3
= ±

1

√3
= ±

√3

3
   

 𝑥ଶ = ±
2

2√3
= ±

1

√3
= ±

√3

3
     

𝑥ଷ = ±
2

2√3
= ±

1

√3
= ±

√3

3
 

 

λ       −
√3

2
       

√3

2
 

𝑥ଵ       −
√3

3
       

√3

3
 

𝑥ଶ       −
√3

3
       

√3

3
 

𝑥ଷ       −
√3

3
       

√3

3
 

𝑥ଵ + 𝑥ଶ + 𝑥ଷ      −  √3         √3                     



             

2. Obtain extreme value of 𝑥ଵ + 𝑥ଶ + 𝑥ଷ, when 𝑥ଵ
ଶ + 𝑥ଶ

ଶ = 1, and 𝑥ଶ
ଶ + 𝑥ଷ

ଶ = 1 

Extreme value of 𝑓(𝑥ଵ 𝑥ଶ 𝑥ଷ)=𝑥ଵ + 𝑥ଶ + 𝑥ଷ 

Subject to 𝑔ଵ(𝑥ଵ 𝑥ଶ 𝑥ଷ)=𝑥ଵ
ଶ + 𝑥ଶ

ଶ − 1 = 0 

𝑔ଶ(𝑥ଵ 𝑥ଶ 𝑥ଷ)=𝑥ଶ
ଶ + 𝑥ଷ

ଶ − 1 = 0 

𝒙 = ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆ଵ 𝜆ଶ) =  𝑥ଵ + 𝑥ଶ + 𝑥ଷ − 𝜆ଵ(𝑥ଵ
ଶ + 𝑥ଶ

ଶ − 1) − 𝜆ଶ(𝑥ଶ
ଶ + 𝑥ଷ

ଶ − 1) 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆ଵ 𝜆ଶ)

𝜕𝒙
 

 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆ଵ 𝜆ଶ)

𝜕𝑥ଵ
= 1 − 2𝜆ଵ𝑥ଵ = 0             i 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆ଵ 𝜆ଶ)

𝜕𝑥ଶ
= 1 − 2(𝜆ଵ + 𝜆ଶ)𝑥ଶ = 0            ii 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆ଵ 𝜆ଶ)

𝜕𝑥ଷ
= 1 − 2𝜆ଶ𝑥ଷ = 0             iii 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆ଵ 𝜆ଶ)

𝜕𝜆ଵ
= 𝑥ଵ

ଶ + 𝑥ଶ
ଶ − 1 = 0             iv 

𝜕𝐿(𝑥ଵ 𝑥ଶ 𝑥ଷ 𝜆ଵ 𝜆ଶ)

𝜕𝜆ଵ
= 𝑥ଶ

ଶ + 𝑥ଷ
ଶ − 1 = 0          v 

From i, ii and iii,  

𝑥ଵ =
1

2𝜆ଵ
             i′ 

𝑥ଶ =
1

2(𝜆ଵ + 𝜆ଶ)
             ii′ 

𝑥ଷ =
1

2𝜆ଶ
             iii′ 

𝑔ଵ(𝑥ଵ 𝑥ଶ 𝑥ଷ) − 𝑔ଶ(𝑥ଵ 𝑥ଶ 𝑥ଷ) = (𝑥ଵ
ଶ + 𝑥ଶ

ଶ − 1) − (𝑥ଶ
ଶ + 𝑥ଷ

ଶ − 1) = 𝑥ଵ
ଶ − 𝑥ଷ

ଶ = 0 

𝑥ଵ
ଶ − 𝑥ଷ

ଶ = (𝑥ଵ + 𝑥ଷ)(𝑥ଵ − 𝑥ଷ) = 0 

𝑥ଵ = 𝑥ଷ  or  𝑥ଵ = −𝑥ଷ 

When 𝑥ଵ = −𝑥ଷ, 𝜆ଵ = −𝜆ଶ and 𝜆ଵ + 𝜆ଶ=0.  

(𝜆ଵ + 𝜆ଶ) is dominator of ii′. So, we could not accept 𝑥ଵ = −𝑥ଷ 

𝑥ଵ = 𝑥ଷ,  𝜆ଵ = −𝜆ଶ = 𝜆 

Put this in i′ and ii’ 



𝑥ଵ =
1

2𝜆ଵ
=

1

2𝜆
             i′′ 

𝑥ଶ =
1

2(𝜆ଵ + 𝜆ଶ)
=

1

4𝜆
     ii′′    

Put i′′ and ii’’ in iv. 

𝑥ଵ
ଶ + 𝑥ଶ

ଶ − 1 =
1

4𝜆ଶ
+

1

16𝜆ଶ
− 1 =

5

16𝜆ଶ
− 1 = 0             iv 

𝜆ଶ =
5

16
 

𝜆 = ±
√5

4
 

Put this in i’, ii’ and iii’ 

𝑥ଵ = ±
1

2
√5
4

= ±
2

√5
   

 𝑥ଶ = ±
1

4
√5
4

= ±
1

√5
     

𝑥ଷ = ±
1

2
√5
4

= ±
2

√5
 

λ       −
√5

4
       

√5

4
 

𝑥ଵ       −
2

√5
      

2

√5
  

𝑥ଶ      −
1

√5
      

1

√5
  

𝑥ଷ       −
2

√5
      

2

√5
  

  𝑥ଵ + 𝑥ଶ + 𝑥ଷ    − √5        √5               


