
V-3-5. Singular value decomposition 

 

In case of spectral decomposition, we can decompose symmetric matrix to a product of 

orthogonal vectors (eigenvectors) and eigenvalue, because symmetric matrix is quadratic 

form and we can draw super conic curve from quadratic form. In the case of symmetric 

matrix, the matrix has inverse matrix. When the matrix has inverse matrix, we say the 

matrix is regular matrix. Regular matrix is invertible matrix and non-singular value 

matrix.  Here, we will consider operation of diagonalization of non-regular matrix. This 

is a generalization of diagonalization to all real matrix including non-regular matrix.  

Singular value decomposition can diagonalize all real matrix. Singular value 

decomposition is as follow. 

𝑴 = 𝑼𝜮𝑽் 

𝑴: 𝑝 × 𝑛 matrix 

𝑝 ≤ 𝑛 

𝜮: diagonal matrix espressing magnitude of the matrix  

𝑼: orthogonal projection operator 

𝑽: orthogonal projection operator 

𝑼் = 𝑼ିଵ 

𝑼்𝑼 = 𝑰 

𝑽் = 𝑽ିଵ 

𝑽்𝑽 = 𝑰 

𝑴 = ൮

𝑚ଵଵ 𝑚ଵଶ

𝑚ଶଵ 𝑚ଶଶ

⋯ 𝑚ଵ௡

⋯ 𝑚ଶ௡

⋮ ⋮
𝑚௣ଵ 𝑚௣ଶ

⋱ ⋮
⋯ 𝑚௣௡

൲

௣×௡

 

𝑴் = ൮

𝑚ଵଵ 𝑚ଶଵ

𝑚ଵଶ 𝑚ଶଶ

⋯ 𝑚௣ଵ

⋯ 𝑚௣ଶ

⋮ ⋮
𝑚ଵ௡ 𝑚ଶ௡

⋱ ⋮
⋯ 𝑚௣௡

൲

௡×௣

 

We do not have any information of 𝜮, though we hypothesize that there exist 𝑼 and 𝑽 

which diagonalize 𝑴 as follow 

𝑼்𝑴𝑽 = 𝜮 

Multiply 𝜮𝑻 to 𝜮 

𝜮𝜮𝑻 = 𝑼்𝑴𝑽(𝑼்𝑴𝑽)்== 𝑼்𝑴𝑽𝑽்𝑴்U== 𝑼்𝑴𝑴்𝑼    i 

Similarly,  

𝜮𝑻𝜮 = (𝑼்𝑴𝑽)்𝑼்𝑴𝑽== 𝑽்𝑴𝑻𝑼𝑼்𝑴U== 𝑽்𝑴்𝑴𝑽       ii 

コメントの追加 [黒倉1]:  



𝑴𝑴𝑻 = ൮

𝑚ଵଵ 𝑚ଵଶ

𝑚ଶଵ 𝑚ଶଶ

⋯ 𝑚ଵ௡

⋯ 𝑚ଶ௡

⋮ ⋮
𝑚௣ଵ 𝑚௣ଶ

⋱ ⋮
⋯ 𝑚௣௡

൲ ൮

𝑚ଵଵ 𝑚ଶଵ

𝑚ଵଶ 𝑚ଶଶ

⋯ 𝑚௣ଵ

⋯ 𝑚௣ଶ

⋮ ⋮
𝑚ଵ௡ 𝑚ଶ௡

⋱ ⋮
⋯ 𝑚௣௡

൲

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

෍ 𝑚ଵ௜
ଶ

௡

௜ୀଵ

෍ 𝑚ଵ௜𝑚ଶ௜

௡

௜ୀଵ

෍ 𝑚ଶ௜𝑚ଵ௜

௡

௜ୀଵ

෍ 𝑚ଶ௜
ଶ

௡

௜ୀଵ

⋯ ෍ 𝑚ଵ௜𝑚௣௜

௡

௜ୀଵ

⋯ ෍ 𝑚ଶ௜𝑚௣௜

௡

௜ୀଵ

⋮ ⋮

෍ 𝑚௣௜𝑚ଵ௜

௡

௜ୀଵ

෍ 𝑚௣௜𝑚ଶ௜

௡

௜ୀଵ

⋱ ⋮

⋯ ෍ 𝑚௣௜
ଶ

௡

௜ୀଵ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

௣×௣

 

𝑴𝑻𝑴 = ൮

𝑚ଵଵ 𝑚ଶଵ

𝑚ଵଶ 𝑚ଶଶ

⋯ 𝑚௣ଵ

⋯ 𝑚௣ଶ

⋮ ⋮
𝑚ଵ௡ 𝑚ଶ௡

⋱ ⋮
⋯ 𝑚௣௡

൲ ൮

𝑚ଵଵ 𝑚ଵଶ

𝑚ଶଵ 𝑚ଶଶ

⋯ 𝑚ଵ௡

⋯ 𝑚ଶ௡

⋮ ⋮
𝑚௣ଵ 𝑚௣ଶ

⋱ ⋮
⋯ 𝑚௣௡

൲ 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

෍ 𝑚௜ଵ
ଶ

௣

௜ୀଵ

෍ 𝑚௜ଵ𝑚௜ଶ

௣

௜ୀଵ

෍ 𝑚௜ଶ𝑚௜ଵ

௣

௜ୀଵ

෍ 𝑚௜ଶ
ଶ

௣

௜ୀଵ

⋯ ෍ 𝑚௜ଵ𝑚௜௡

௣

௜ୀଵ

⋯ ෍ 𝑚௜ଶ𝑚௜௡

௣

௜ୀଵ

⋮ ⋮

෍ 𝑚௜௡𝑚௜ଵ

௣

௜ୀଵ

෍ 𝑚௜௡𝑚௜ଶ

௣

௜ୀଵ

⋱ ⋮

⋯ ෍ 𝑚௜௡
ଶ

௣

௜ୀଵ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

௡×௡

 

 

Both 𝑴𝑴்  and 𝑴்𝑴  are symmetric. The right side of the equations i and ii are 

Diagonalization of symmetric matrix. This calculation demonstrates that projection 

operators of 𝑴𝑴் and 𝑴்𝑴 can be candidate of left and right single operator. When 

we accept the hypothesis.  

𝜮𝜮𝑻 = 𝑼்𝑴𝑴்𝑼 =  𝝀 = ൮

𝜆ଵ 0
0 𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱   ⋮
⋯   𝜆௣

൲ =

⎝

⎜⎜
⎛

ඥ𝜆ଵ 0

0 ඥ𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱   ⋮

⋯   ට𝜆௣⎠

⎟⎟
⎞

⎝

⎜⎜
⎛

ඥ𝜆ଵ 0

0 ඥ𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱   ⋮

⋯   ට𝜆௣⎠

⎟⎟
⎞

்

 

𝜆ଵ ≥ 𝜆ଶ ≥ ⋯ ≥ 𝜆௣ ≥ 

𝜮𝜮𝑻 = 𝝀 

Mathematically, this is correct, though it has problem in form of notation. When we select 

𝑼  in following equation as left singular operator, 𝑼் is 𝑝 ×p matrix,  𝑽  is  𝑛 × 𝑛 

matrix, and 𝑴 is  𝑝 × 𝑛 matrix. 



𝑼்𝑴𝑽 = ൮

𝑢ଵଵ 𝑢ଵଶ

𝑢ଶଵ 𝑢ଶଶ

⋯ 𝑢ଵ௣

⋯ 𝑢ଶ௣

⋮ ⋮
𝑢௣ଵ 𝑢௣ଶ

⋱ ⋮
⋯ 𝑢௣௣

൲

𝑻

൮

𝑚ଵଵ 𝑚ଵଶ

𝑚ଶଵ 𝑚ଶଶ

⋯ 𝑚ଵ௡

⋯ 𝑚ଶ௡

⋮ ⋮
𝑚௣ଵ 𝑚௣ଶ

⋱ ⋮
⋯ 𝑚௣௡

൲ ൮

𝑣ଵଵ 𝑣ଵଶ

𝑣ଶଵ 𝑣ଶଶ

⋯ 𝑣ଵ௡

⋯ 𝑣ଶ௡

⋮ ⋮
𝑣௡ଵ 𝑣௡ଶ

⋱ ⋮
⋯ 𝑣௡௡

൲ 

= ൮

𝑢ଵଵ 𝑢ଶଵ

𝑢ଵଶ 𝑢ଶଶ

⋯ 𝑢௣ଵ

⋯ 𝑢௣ଶ

⋮ ⋮
𝑢ଵ௣ 𝑢ଶ௣

⋱ ⋮
⋯ 𝑢௣௣

൲

௣×௣

൮

𝑚ଵଵ 𝑚ଵଶ

𝑚ଶଵ 𝑚ଶଶ

⋯ 𝑚ଵ௡

⋯ 𝑚ଶ௡

⋮ ⋮
𝑚௣ଵ 𝑚௣ଶ

⋱ ⋮
⋯ 𝑚௣௡

൲

௣×௡

൮

𝑣ଵଵ 𝑣ଵଶ

𝑣ଶଵ 𝑣ଶଶ

⋯ 𝑣ଵ௡

⋯ 𝑣ଶ௡

⋮ ⋮
𝑣௡ଵ 𝑣௡ଶ

⋱ ⋮
⋯ 𝑣௡௡

൲

௡×௡

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

෍ 𝑢௜ଵ

௣

௜ୀଵ

𝑚௜ଵ ෍ 𝑢௜ଵ

௣

௜ୀଵ

𝑚௜ଶ

෍ 𝑢௜ଶ

௣

௜ୀଵ

𝑚௜ଵ ෍ 𝑢௜ଶ

௣

௜ୀଵ

𝑚௜ଶ

⋯ ෍ 𝑢௜ଵ

௣

௜ୀଵ

𝑚௜௡

⋯ ෍ 𝑢௜ଶ

௣

௜ୀଵ

𝑚௜௡

⋮ ⋮

෍ 𝑢௜௣

௣

௜ୀଵ

𝑚௜ଵ ෍ 𝑢௜௣

௣

௜ୀଵ

𝑚௜ଶ

⋱ ⋮

⋯ ෍ 𝑢௜௣

௣

௜ୀଵ

𝑚௜௡
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

൮

𝑣ଵଵ 𝑣ଵଶ

𝑣ଶଵ 𝑣ଶଶ

⋯ 𝑣ଵ௡

⋯ 𝑣ଶ௡

⋮ ⋮
𝑣௡ଵ 𝑣௡ଶ

⋱ ⋮
⋯ 𝑣௡௡

൲ 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

෍ 𝑣௝ଵ

௡

௝ୀ

෍ 𝑢௜ଵ

௣

௜ୀଵ

𝑚௜௝ ෍ 𝑣௝ଶ

௡

௝ୀ

෍ 𝑢௜ଵ

௣

௜ୀଵ

𝑚௜௝

෍ 𝑣௝ଵ

௡

௝ୀ

෍ 𝑢௜ଶ

௣

௜ୀଵ

𝑚௜௝ ෍ 𝑣௝ଶ

௡

௝ୀ

෍ 𝑢௜ଶ

௣

௜ୀଵ

𝑚௜௝

⋯ ෍ 𝑣௝௡

௡

௝ୀ

෍ 𝑢௜ଵ

௣

௜ୀଵ

𝑚௜௝

⋯ ෍ 𝑣௝௡

௡

௝ୀ

෍ 𝑢௜ଶ

௣

௜ୀଵ

𝑚௜௝

⋮ ⋮

෍ 𝑣௝ଵ

௡

௝ୀ

෍ 𝑢௜௣

௣

௜ୀଵ

𝑚௜௝ ෍ 𝑣௝ଶ

௡

௝ୀ

෍ 𝑢௜௣

௣

௜ୀଵ

𝑚௜௝

⋱ ⋮

⋯ ෍ 𝑣௝௡

௡

௝ୀ

෍ 𝑢௜௣

௣

௜ୀଵ

𝑚௜௝

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

௣×௡

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

෍ ෍ 𝑣௝ଵ𝑢௜ଵ

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

෍ ෍ 𝑣௝ଶ𝑢௜ଵ

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

෍ ෍ 𝑣௝ଵ𝑢௜ଶ

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

෍ ෍ 𝑣௝ଶ𝑢௜ଶ

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

⋯ ෍ ෍ 𝑣௝௡𝑢௜ଵ

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

⋯ ෍ ෍ 𝑣௝௡𝑢௜ଶ

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

⋮ ⋮

෍ ෍ 𝑣௝ଵ𝑢௜௣

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

෍ ෍ 𝑣௝ଶ𝑢௜௣

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

⋱ ⋮

⋯ ෍ ෍ 𝑣௝௡𝑢௜௣

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

௣×௡

 

It is difficult to calculate 

෍ ෍ 𝑣௝௞𝑢௜௛

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

 

However, we can understand that the matrix of 𝜮 should be 𝑝 × 𝑛, and  

෍ ෍ 𝑣௝௞𝑢௜௛

௣

௜ୀଵ

𝑚௜௝

௡

௝ୀ

= γ௜𝛿௜௝ 



------------------------------------------------------------------------------------------------------------------------- 

Function 𝛿௜௝ is Kronecker delta. Kronecker delta Kronecker delta is following binary 

variable. 

𝛿௜௝ = ൜
1 (𝑖 = 𝑗)

0 (𝑖 ≠ 𝑗)
ൠ 

An example. 

There is a matrix of  𝑼𝟏
்𝑼𝟏 

𝑼𝟏
்𝑼𝟏 =

⎝

⎛

𝒖𝟏
்

𝒖𝟐
்

⋮
𝒖𝒑

்
⎠

⎞ (𝒖𝟏 𝒖𝟐
⋯ 𝒖𝒑) =

⎝

⎜
⎛

𝒖𝟏
்𝒖𝟏 𝒖𝟏

்𝒖𝟐

𝒖𝟐
்𝒖𝟏 𝒖𝟐

்𝒖𝟐

⋯ 𝒖𝟏
்𝒖𝒑

⋯ 𝒖𝟐
்𝒖𝒑

⋮ ⋮
𝒖𝒑

்𝒖𝟏 𝒖𝒑
்𝒖𝟐

⋱   ⋮
⋯   𝒖𝒑

்𝒖𝒑⎠

⎟
⎞

 

When the factor of the matrix is as follow, 

𝒖𝒊
்𝒖𝒋 = 𝛿௜௝ 

We can express the matrix as follow. 

 

𝑼𝟏
்𝑼𝟏 =

⎝

⎛

𝛿ଵଵ 𝛿ଵଶ

𝛿ଶଵ 𝛿ଶଶ

⋯ 𝛿ଵ௣

⋯ 𝛿ଶ௣

⋮ ⋮
𝛿௣ଵ 𝛿௣ଶ

⋱   ⋮
⋯   𝛿௣௣⎠

⎞ = ቌ

1 0
0 1

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 1

ቍ

௣×௣

 

------------------------------------------------------------------------------------------------------------------ 

𝑼்𝑴𝑽 =

⎝

⎛

𝛾ଵ𝛿ଵଵ 𝛿ଵଶ

𝛿ଶଵ 𝛾ଶ𝛿ଶଶ

⋯ 𝛿ଵ௣ 𝛿ଵ௣ାଵ     ⋯ 𝛿ଵ௡

⋯ 𝛿ଶ௣ 𝛿ଶ௣ାଵ     ⋯ 𝛿ଶ௡

⋮ ⋮
𝛿௣ଵ 𝛿௣ଶ

   
⋱ ⋮         ⋮      ⋯ ⋮
⋯ 𝛾௣𝛿௣௣ 𝛿௣௣ାଵ ⋯ 𝛿௣௡⎠

⎞

௣×௡

= ൮

𝛾ଵ 0
0 𝛾ଶ

⋯  0 0     ⋯ 0
⋯   0 0     ⋯ 0

⋮ ⋮
0 0

 
⋱ ⋮ ⋮     ⋯ ⋮
⋯ 𝛾௣ 0   ⋯ 0

൲

௣×௡

 

The name of 𝛾 is single value.  

When we multiply 𝑼 from left 𝑽் from right, 

𝛾௜ = ඥ𝜆ଵ 

𝑼𝑼்𝑴𝑽𝑽் = 𝑼 ൮

𝛾ଵ 0
0 𝛾ଶ

⋯  0 0     ⋯ 0
⋯   0 0     ⋯ 0

⋮ ⋮
0 0

 
⋱ ⋮ ⋮     ⋯ ⋮
⋯ 𝛾௣ 0   ⋯ 0

൲

௣×௡

𝑽் = 𝑼𝜮𝑽் 

𝑼𝑼்𝑴𝑽𝑽் = 𝑰𝑴𝑰 = 𝑴 

𝑴 = 𝑼𝜮𝑽் 

This is singular value decomposition. We can obtain left singular operator as orthogonal 

projection operator for diagonalization of 𝑴𝑴்  and can obtain right singular operator 

as operator for diagonalization of  𝑴்𝑴. This the conclusion of this paragraph. However, 

we have to prove the adequacy of hypothesis that there exist 𝑼 and 𝑽   

Proof 

First step 



𝑼 = (𝒖𝟏 𝒖𝟐
⋯ 𝒖𝒑) 

𝑼்𝑴𝑴்𝑼 = 𝜦 

Multiply 𝑼 from left to both side 

𝑼𝑼்𝑴𝑴்𝑼 = 𝑼𝜦 

𝑼𝑼் = 𝑰 

𝑴𝑴்𝑼 = 𝑼𝜦 = (𝒖𝟏 𝒖𝟐
⋯ 𝒖𝒑) ൮

𝜆ଵ 0
0 𝜆ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱   ⋮
⋯   𝜆௣

൲ = (𝜆ଵ𝒖𝟏 𝜆ଶ𝒖𝟐 ⋯ 𝜆௣𝒖𝒑) 

∴    𝑴𝑴்𝒖𝒊 = 𝜆௜𝒖𝒊=𝛾௜
ଶ𝒖𝒊 

Similarly,  

𝑽 = (𝒗𝟏 𝒗𝟐
⋯ 𝒗𝒏) 

𝑽்𝑴்𝑴𝑽 = 𝑳𝟐 

𝑳𝟐 =

⎝

⎜
⎛

𝑙ଵ
ଶ 0

0 𝑙ଶ
ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱   ⋮
⋯   𝑙௡

ଶ

⎠

⎟
⎞

 

Multiply 𝑽 from left to both side 

𝑽𝑽்𝑴்𝑴𝑽 = 𝐕𝑳𝟐 

𝑽𝑽் = 𝑰 

𝑴்𝑴𝑽 = (𝒗𝟏 𝒗𝟐
⋯ 𝒗𝒏)

⎝

⎜
⎛

𝑙ଵ
ଶ 0

0 𝑙ଶ
ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱   ⋮
⋯   𝑙௡

ଶ

⎠

⎟
⎞

= ൫𝑙ଵ
ଶ𝒗𝟏 𝑙ଶ

ଶ𝒗𝟐 ⋯ 𝑙௡
ଶ𝒗𝒏൯ 

𝑴்𝑴𝒗𝒋 = 𝑙௝
ଶ𝒗𝒋 

When we replace 𝛾௜ to 𝑙ଵ, 

 𝑴்𝑴𝑽 = (𝒗𝟏 𝒗𝟐 ⋯ 𝒗𝒏)

⎝

⎛

𝛾ଵ
ଶ 0

0 𝛾ଶ
ଶ

⋯  0 0     ⋯ 0
⋯   0 0     ⋯ 0

⋮ ⋮
0 0

 
⋱ ⋮ ⋮     ⋯ ⋮
⋯ 𝛾௣

ଶ 0   ⋯ 0⎠

⎞ = ൫𝛾ଵ
ଶ𝒗𝟏 𝛾ଶ

ଶ𝒗𝟐 ⋯ 𝛾௣
ଶ𝒗𝒑 0𝒗𝒑ା𝟏 ⋯ 0𝒗𝒏൯ 

𝑴்𝑴𝒗𝒋 = 𝛾௝
ଶ𝒗𝒋   for j = 1~p  

𝑴்𝑴𝒗𝒋 = 0, 𝒗𝒋 = 0   for j = 𝑝 + 1~n 

Proof of existence of 𝑼 and 𝑽 

Existence of 𝑽  is trivial because 𝑽  is orthogonal projection operator of symmetric 

matrix. 

𝒘𝒋 =
1

𝛾௝
𝒗𝒋 

𝒗𝒊𝒗𝒋 = 𝛿௜௝ 



𝒘𝒊𝒘𝒋 =
1

𝛾௜𝛾௝
𝒗𝒊𝒗𝒋 =

1

𝛾௜𝛾௝
𝛿௜௝ 

𝒘𝒊 ⊥ 𝒘𝒋 (𝑖 ≠ 𝑗) 

𝑽 = (𝒗𝟏 𝒗𝟐 ⋯ 𝒗𝒑 𝒗𝒑ା𝟏 ⋯ 𝒗𝒏) 

𝑾 = (𝒘𝟏 𝒘𝟐
⋯ 𝒘𝒑) 

𝑾𝑻 =

⎝

⎛

𝒘𝟏
்

𝒘𝟐
்

⋮
𝒘𝒑

𝑻
⎠

⎞ 

𝑳 = ൮

𝛾ଵ 0
0 𝛾ଶ

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱   ⋮
⋯   𝛾௣

൲ 

𝑾்𝑳𝑽 = 𝑾்𝑳(𝒗𝟏 𝒗𝟐 ⋯ 𝒗𝒑 𝒗𝒑ା𝟏 ⋯ 𝒗𝒏) 

= 𝑾்(𝛾ଵ𝒘𝟏 𝛾ଶ𝒘𝟐 ⋯ 𝛾௣𝒘𝒑 0 ⋯ 0) 

=

⎝

⎛

𝒘𝟏
்

𝒘𝟐
்

⋮
𝒘𝒑

𝑻
⎠

⎞ (𝛾ଵ𝒘𝟏 𝛾ଶ𝒘𝟐 ⋯ 𝛾௣𝒘𝒑 0 ⋯ 0) 

=

⎝

⎜
⎛

𝛾ଵ𝒘𝟏
்𝒘𝟏 𝛾ଶ𝒘𝟏

்𝒘𝟐

𝛾ଵ𝒘𝟐
்𝒘𝟏 𝛾ଶ𝒘𝟐

்𝒘𝟐

⋯  𝛾௣𝒘𝟏
்𝒘𝒑 0𝒘𝟏

்     ⋯ 0𝒘𝟏
்

⋯ 𝛾௣𝒘𝟐
்𝒘𝒑  0𝒘𝟐

்     ⋯ 0𝒘𝟐
்

⋮ ⋮

𝛾ଵ𝒘𝒑
்𝒘𝟏 𝛾ଶ𝒘𝒑

்𝒘𝟐
 
⋱              ⋮              ⋮           ⋯       ⋮

⋯ 𝛾௣𝒘𝟐
்𝒘𝒑 0𝒘𝒑

்   ⋯ 0𝒘𝒑
்   

⎠

⎟
⎞

 

= ൮

𝛾ଵ 0 ⋯ 0 0 ⋯ 0

0 𝛾ଶ ⋯ 0 0 ⋯ 0

⋮

0

⋮

0

⋱

⋯

0

𝛾௣

0

0

⋯

⋯

0

0

൲ 

∵    𝒘𝒊
்𝒘𝒋 = 𝛿௜௝    𝒘𝒊 ⊥ 𝒘𝒋        iii 

Q.E.D 

We could demonstrate that there exist left singular operator and right singular operator 

for all matrix and we can denote U = 𝑾 

Conclusively 

𝑴 = 𝑼𝜮𝑽் 

𝜮 = ൮

𝛾ଵ 0 ⋯ 0 0 ⋯ 0

0 𝛾ଶ ⋯ 0 0 ⋯ 0

⋮

0

⋮

0

⋱

⋯

0

𝛾௣

0

0

⋯

⋯

0

0

൲

𝑝×𝑛

 

We discussed only the case when 𝑝 < 𝑛. In the case when 𝑝 > 𝑛 



𝜮 =

⎝

⎜
⎜
⎜
⎛

𝛾ଵ 0
0 𝛾ଶ

⋯ 0
⋯ 0

⋮ ⋮
0
0
⋮
0

0
0
⋮
0

⋱ ⋮
⋯
⋯
⋱
⋯

𝛾௡

0
⋮
0 ⎠

⎟
⎟
⎟
⎞

𝑝×𝑛

 

Formula 72 

 

In several case,  𝑴 is positive semidefinite (eigenvalue include 0.). The number of 

positive singular value is rank (𝑟).   𝑟 ≤ 𝑝 

In such case 𝑟 < 𝑝 

𝜮 =

⎝

⎜
⎜
⎜
⎛

𝛾ଵ 0
0 𝛾ଶ

⋯ 0 0 ⋯ 0
⋯ 0 0 ⋯ 0

⋮ ⋮
0
0
⋮
0

0
0
⋮
0

⋱ ⋮  ⋮ ⋱ 0
⋯
⋯
⋱
⋯

𝛾௥ 0 ⋯ 0
0  0 ⋯ 0
⋮ ⋮   ⋱   ⋮
0  0 ⋯ 0⎠

⎟
⎟
⎟
⎞

𝑝×𝑛

 

More generally, 𝜮 can be expressed as follow 

𝜮 = ൬
𝑺௥,௥ 𝑶௥.௡ି௥

𝑶௠ି௥,௥ 𝑶௠ି௥,௡ି௥
൰ 

𝑺௥,௥: diagonal 𝑚𝑎𝑡𝑟𝑖𝑥,   𝑑𝑖𝑎𝑔(𝛾ଵ ⋯ 𝛾௥) 

𝑑𝑖𝑎𝑔( ) is diagonal components  

𝛾ଵ ≥ 𝛾ଶ ≥ ⋯ ≥ 𝛾௥ > 0 

𝑶௜,௝ = ൭
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

൱

௜×௝

 

Application of singular value decomposition  

𝑴 = ൭
4 0 0
0 1 −1
0 −1 1

൱ 

This matrix is linearly dependent (not independent), because third column and third row 

are real number times of second column and second row. From this we can judge that 

rank of the matrix is 2, because number of linearly independent column and row is 2. 

However, judgement of number of rank difficult from dataset is generally difficult, 

because we cannot notice the dependency of the row or column, when a row or column is 

linear combination of other rows or columns. In addition to this, similar samples are 

often included in data set, and many data are approximately the same. In such case, we 

obtain several very small singular values which is approximately 0. 

𝜮 is as follow 



𝜮 = ൮

𝛾ଵ 0
0 𝛾ଶ

⋯ 0 0 ⋯ 0
⋯ 0 0 ⋯ 0

⋮ ⋮
0 0

⋱ ⋮ ⋮ ⋱ ⋮
⋯ 𝛾௣ 0 ⋯ 0

൲

௣×௡

 

𝑑𝑖𝑎𝑔(𝛾ଵ ⋯ 𝛾௣) 

𝛾ଵ ≥ 𝛾ଶ ≥ ⋯ ≥ 𝛾௣ ≥ 0 

The analysts should judge the singular values are 0 or not 0, comparing the singular 

values to other singular values, considering the purpose of analysis, drawing their 

experience and referring previous works. The work the analysts is judgement of 

threshold, which is S in following inequality 

𝛾ଵ ≥ 𝛾ଶ ≥ ⋯ ≥ 𝛾௥ ≥ 𝑆 ≥ 𝛾௥ାଵ ≥ ⋯ ≥ 𝛾௥ᇲ > 0 

Then following 𝜮 is determined. 

𝜮 =

⎝

⎜
⎜
⎜
⎛

𝛾ଵ 0
0 𝛾ଶ

⋯ 0 0 ⋯ 0
⋯ 0 0 ⋯ 0

⋮ ⋮
0
0
⋮
0

0
0
⋮
0

⋱ ⋮  ⋮ ⋱ 0
⋯
⋯
⋱
⋯

𝛾௥ 0 ⋯ 0
0  0 ⋯ 0
⋮ ⋮   ⋱   ⋮
0  0 ⋯ 0⎠

⎟
⎟
⎟
⎞

𝑝×𝑛

 

  In case of following matrix 

𝑴 = ൭
4 0 0
0 1 −1
0 −1 1

൱ 

𝑴𝑻 = ൭
4 0 0
0 1 −1
0 −1 1

൱ 

𝑴𝑴𝑻 = ൭
4 0 0
0 1 −1
0 −1 1

൱ ൭
4 0 0
0 1 −1
0 −1 1

൱ = ൭
16 0 0
0 2 −2
0 −2 2

൱ 

固有方程式 

อ
16 − 𝜆 0 0

0 2 − 𝜆 −2
0 −2 2 − 𝜆

อ = 0 

(16 − 𝜆)(2 − 𝜆)(2 − 𝜆) − 4(16 − 𝜆) = 0 

(𝜆 − 16)(𝜆 − 4)𝜆 = 0 

From this we can judge the rank of the matrix as 3－1=2. 

Eigenvector  belonging eigenvalue16 

൭
16 0 0
0 2 −2
0 −2 2

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 16 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

൭

16𝑥ଵ

2𝑥ଶ − 2𝑥ଷ

−2𝑥ଶ + 2𝑥ଷ

൱ = ൭
16𝑥ଵ

16𝑥ଶ

16𝑥ଷ

൱ 

14𝑥ଶ + 2𝑥ଷ = 0 



2𝑥ଶ + 14𝑥ଷ = 0 

𝑥ଶ = 𝑥ଷ = 0 

𝒆ଵ = ൭
1
0
0

൱ 

Eigenvector belonging eigenvalue 4 

൭
16 0 0
0 2 −2
0 −2 2

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 4 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

൭

16𝑥ଵ

2𝑥ଶ − 2𝑥ଷ

−2𝑥ଶ + 2𝑥ଷ

൱ = ൭
4𝑥ଵ

4𝑥ଶ

4𝑥ଷ

൱ 

12𝑥ଵ = 0 

−2𝑥ଶ − 2𝑥ଷ = 0 

−2𝑥ଶ − 2𝑥ଷ = 0 

𝑥ଵ = 0, 𝑥ଶ = −𝑥ଷ 

𝒆ଶ =

⎝

⎜
⎛

0
1

√2

−
1

√2⎠

⎟
⎞

 

Eigenvector belonging eigenvalue 0 

൭
16 0 0
0 2 −2
0 −2 2

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 0 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

൭

16𝑥ଵ

2𝑥ଶ − 2𝑥ଷ

−2𝑥ଶ + 2𝑥ଷ

൱ = ൭
0
0
0

൱ 

𝑥ଵ = 0 

2𝑥ଶ − 2𝑥ଷ = 0 

−2𝑥ଶ + 2𝑥ଷ = 0 

𝑥ଵ = 0, 𝑥ଶ = 𝑥ଷ 

𝒆ଷ =

⎝

⎜
⎛

0
1

√2
1

√2⎠

⎟
⎞

 

Result of singular value decomposition is as follow. 

Left singular operator is ൮

1 0 0

0
ଵ

√ଶ

ଵ

√ଶ

0
ଵ

ି√ଶ

ଵ

√ଶ

൲. 



Right singular operator is ൮

1 0 0

0
ଵ

√ଶ

ଵ

√ଶ

0
ଵ

ି√ଶ

ଵ

√ଶ

൲

்

 

𝜮 = ൭
4 0 0
0 2 0
0 0 0

൱ 

Confirmation of adequacy of the result  

⎝

⎜
⎛

1 0 0

0
1

√2

1

√2

0
1

−√2

1

√2⎠

⎟
⎞

൭
4 0 0
0 2 0
0 0 0

൱

⎝

⎜
⎛

1 0 0

0
1

√2
−

1

√2

0
1

√2

1

√2 ⎠

⎟
⎞

= ቌ

4 0 0

0 √2 0

0 −√2 0

ቍ

⎝

⎜
⎛

1 0 0

0
1

√2
−

1

√2

0
1

√2

1

√2 ⎠

⎟
⎞

= ൭
4 0 0
0 1 −1
0 −1 1

൱ 

 

This is means that left singular operator equals to right singular operator in singular 

value decomposition.  This is understandable when we consider power method of 

symmetric matrix. 

In symmetric matrix, 

𝑴𝑴் = 𝑴்𝑴= 𝑴𝟐 

Matrix 𝑴 is decompose as follow. 

𝑴 = 𝑼𝚲𝑼் 

Using power method of symmetric matrix 

𝑴𝑴் = 𝑴்𝑴 = 𝑴𝟐 = 𝑼𝚲𝟐𝑼் 

From this we can accept that diagonalization of symmetric matrix is a specific case of 

right singular decomposition in which left singular operator equals to right singular 

operator.  

 

Figure 61 is illustrating the procedure of singular value decomposition. In 
this illustration the matrix 𝑴 is transformation of unit circle and yellow vector (A) 

to inclined ellipse and yellow vector (D). When there exists inverse matrix 𝑴ି𝟏, inverse 

operation is multiplication of 𝑴ି𝟏. However, there are several conditions for existence 

of inverse matrix. Particularly, non-square matrix has no inverse matrix. Singular value 

decomposition provides alternative detour root of inverse operation. Matrix 𝑽்  is 

rotation, matrix 𝜮 is expansion and contraction, and 𝑼 is rotation.  



      

Fig. 61 Procedure of singular value decomposition and inverse operation. 

 

The process  A → D is expressed as follow 

𝑴𝑨 = 𝑫 

The process  D → A is expressed as follow 

𝑴ିଵ𝑴𝑨 = 𝑴ିଵ𝑫 

𝑨 = 𝑴ିଵ𝑫 

However, we cannot obtain 𝑴ିଵ . The alternative route of 𝑴 is 𝑽் → 𝜮 → 𝑼. This is 

expressed as  

𝑴 = 𝑼𝜮𝑽் 

𝜮 =

⎝

⎜
⎜
⎜
⎛

𝛾ଵ 0
0 𝛾ଶ

⋯ 0 0 ⋯ 0
⋯ 0 0 ⋯ 0

⋮ ⋮
0
0
⋮
0

0
0
⋮
0

⋱ ⋮  ⋮ ⋱ 0
⋯
⋯
⋱
⋯

𝛾௥ 0 ⋯ 0
0  0 ⋯ 0
⋮ ⋮   ⋱   ⋮
0  0 ⋯ 0⎠

⎟
⎟
⎟
⎞

𝑝×𝑛

 

Converse route is 𝑼் → 𝜮 → 𝑽. This procedure is expressed as follow  

𝑴∗ = 𝑽𝜮#𝑼் 

𝜮# =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1

𝛾ଵ

0

0
1

𝛾ଶ

⋯ 0 0 ⋯ 0

⋯ 0 0 ⋯ 0

⋮ ⋮
0

0

⋮
0

0

0

⋮
0

⋱ ⋮  ⋮ ⋱ 0
⋯

⋯

⋱
⋯

1

𝛾௥

0 ⋯ 0

0  0 ⋯ 0

⋮ ⋮   ⋱   ⋮
0  0 ⋯ 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

௡×௣

 



𝑴∗: Alternative motrix for inverse matrix (pseudo − inverse matrix) 

𝑨 = 𝑴∗𝑫 

Pseudo-inverse matrix has similar function as singular value decomposition. Let clarify 

the relation between pseudo-inverse matrix and singular value decomposition. The 

formula of pseudo-inverse matrix is as follow   

𝑴# = (𝑴்𝑴)ି𝟏𝑴் 

Using diagonalization of symmetric matrix  

𝑴்𝑴 = 𝑽𝜮𝟐𝑽் 

(𝑴்𝑴)ି𝟏 = 𝑽்ିଵ
𝜮ି𝟐𝑽ି𝟏 = 𝑽𝜮ି𝟐𝑽் 

𝑴் = (𝑼𝜮𝑽்)் = 𝑽𝜮𝑼் 

𝑴# = (𝑴்𝑴)ି𝟏𝑴் = 𝑽𝜮ି𝟐𝑽்  𝑽𝜮𝑼் = 𝑽𝜮ିଵ𝑼் 

𝑴∗ = 𝑴# 

We could confirm that inverse operation of singular value decomposition is pseudo-

inverse matrix. This means that when we consider small singular value as 0, we can 

decrease the rank for approximate calculation. This is the base of Principle component 

analysis.  

 

Exercises for clear understanding  

Exercise I. Singular value decomposition of 2 × 2 matrix 

𝑨 = ቀ
0 2
1 0

ቁ 

Calculation of singular value and left singular operator 

𝑨𝑨𝑻 = ቀ
0 −2
1 0

ቁ ቀ
0 1

−2 0
ቁ = ቀ

4 0
0 1

ቁ 

Eigenvalue and eigenvector  

ቚ
4 − 𝜆 0

0 1 − 𝜆
ቚ = 0 

(4 − 𝜆)(1 − 𝜆) = 0 

𝜆 = 4, 1 

  Eigenvector for 𝜆 = 4 

ቀ
4 0
0 1

ቁ ቀ
𝑥ଵ

𝑥ଶ
ቁ = 4 ቀ

𝑥ଵ

𝑥ଶ
ቁ 

𝑥ଵ = 𝑥ଵ 

𝑥ଶ = 4𝑥ଶ 

𝑥ଵ = 𝑡 and 𝑥ଶ = 0、 



ቀ
1
0

ቁ 

Eigenvector for 𝜆 = 1 

ቀ
4 0
0 1

ቁ ቀ
𝑥ଵ

𝑥ଶ
ቁ = 1 ቀ

𝑥ଵ

𝑥ଶ
ቁ 

4𝑥ଵ = 𝑥ଵ 

𝑥ଶ = 𝑥ଶ 

𝑥ଵ = 0 and 𝑥ଶ = 𝑡 

ቀ
0
1

ቁ 

 Left singular operator 

𝑼 = ቀ
1 0
0 1

ቁ 

  𝑼ି𝟏 =   𝑼் = ቀ
1 0
0 1

ቁ  

Calculation of right singular operator 

𝑨𝑻𝑨 = ቀ
0 1

−2 0
ቁ ቀ

0 −2
1 0

ቁ = ቀ
1 0
0 4

ቁ 

 Eigenvalue and eigenvector 

ቚ
1 − 𝜆 0

0 4 − 𝜆
ቚ = 0 

(4 − 𝜆)(1 − 𝜆) = 0 

𝜆 = 4, 1 

ቀ
1 0
0 4

ቁ ቀ
𝑥ଵ

𝑥ଶ
ቁ = 4 ቀ

𝑥ଵ

𝑥ଶ
ቁ 

                                     𝑥ଵ = 4𝑥ଵ 

𝑥ଶ = 𝑥ଶ 

ቀ
0
1

ቁ 

ቀ
1 0
0 4

ቁ ቀ
𝑥ଵ

𝑥ଶ
ቁ = 1 ቀ

𝑥ଵ

𝑥ଶ
ቁ 

                                     𝑥ଵ = 𝑥ଵ 

4𝑥ଶ = 𝑥ଶ 

𝑥ଵ = t𝑥ଵ 

𝑥ଶ = 0 

 



ቀ
1
0

ቁ 

𝑽 = ቀ
0 1
1 0

ቁ ,   𝑽ି𝟏 =   𝑽் = ቀ
0 1
1 0

ቁ  

γଵ = ඥλଵ = √4 = 2 

γଶ = ඥλଶ = √1 = 1 

𝜮 = ቀ
2 0
0 1

ቁ 

Confirmation 

ቀ
0 2
1 0

ቁ = 𝑼𝜮𝑽் = ቀ
1 0
0 1

ቁ ቀ
2 0
0 1

ቁ ቀ
0 1
1 0

ቁ = ቀ
2 0
0 1

ቁ ቀ
0 1
1 0

ቁ = ቀ
0 2
1 0

ቁ 

Exercise II. Singular value decomposition of 2 × 3 matrix 

𝑨 = ቀ
1 0 0
0 1 1

ቁ 

Rank of this matrix is 2 

𝑨் = ൭
1 0
0 1
0 1

൱ 

Left singular operator 

𝑨𝑨் = ቀ
1 0 0
0 1 1

ቁ ൭
1 0
0 1
0 1

൱ = ቀ
1 0
0 2

ቁ 

Eigenvalue is λ = 2, 1 and singular value  𝛾ଵ = √2, and 𝛾ଵ = 1. 

Eigenvector  

ቀ
1 0
0 2

ቁ ቀ
𝑥ଵ

𝑥ଶ
ቁ = 2 ቀ

𝑥ଵ

𝑥ଶ
ቁ 

𝑥ଵ = 2𝑥ଵ 

2𝑥ଶ = 2𝑥ଶ 

𝑥ଵ = 0, 𝑥ଶ = 𝑡 

ቀ
1 0
0 2

ቁ ቀ
𝑥ଵ

𝑥ଶ
ቁ = ቀ

𝑥ଵ

𝑥ଶ
ቁ 

𝑥ଵ = 𝑥ଵ 

2𝑥ଶ = 𝑥ଶ 

𝑥ଵ = 1, 𝑥ଶ = 0 

 

𝑼 = ቀ
0 1
1 0

ቁ ,   𝑼ି𝟏 =   𝑼் = ቀ
0 1
1 0

ቁ 

Right singular operator 



𝑨்𝑨 = ൭
1 0
0 1
0 1

൱ ቀ
1 0 0
0 1 1

ቁ = ൭
1 0 0
0 1 1
0 1 1

൱ 

Eigenvalue and eigenvector 

อ
1 − 𝜆 0 0

0 1 − 𝜆 1
0 1 1 − 𝜆

อ = 0 

(1 − 𝜆)ଷ − (1 − 𝜆) = 0 

(1 − 𝜆){(1 − 𝜆)ଶ − 1} = 0 

𝜆(1 − 𝜆)(2 − 𝜆) = 0 

λ = 2, 1, 0 

Rank of 𝑨 is 2  

Eigenvector for λ = 2 

൭
1 0 0
0 1 1
0 1 1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 2 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

𝑥ଵ = 2𝑥ଵ 

𝑥ଶ + 𝑥ଷ = 2𝑥ଶ 

𝑥ଶ + 𝑥ଷ = 2𝑥ଷ 

൭
0
𝑡
𝑡

൱ 

t =
1

√2
  

⎝

⎜
⎛

0
1

√2
1

√2⎠

⎟
⎞

 

Eigenvector for λ = 1 

൭
1 0 0
0 1 1
0 1 1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 1 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

𝑥ଵ = 𝑥ଵ 

𝑥ଶ + 𝑥ଷ = 𝑥ଶ 

𝑥ଶ + 𝑥ଷ = 𝑥ଷ 

൭
1
0
0

൱ 

Eigen vector for λ = 0 

൭
1 0 0
0 1 1
0 1 1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 0 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

𝑥ଵ = 𝑥ଵ 



𝑥ଶ + 𝑥ଷ = 0 

𝑥ଶ + 𝑥ଷ =0 

൭
0
𝑡

−𝑡
൱ 

t =
1

√2
 

⎝

⎜
⎛

0
1

√2

−
1

√2⎠

⎟
⎞

 

Right singular operator 

𝑽 =

⎝

⎜
⎛

0 1 0
1

√2
0

1

√2
1

√2
0 −

1

√2⎠

⎟
⎞

 

𝑽் =

⎝

⎜
⎛

0
1

√2

1

√2
1 0 0

0
1

√2
−

1

√2⎠

⎟
⎞

 

𝜮 = ൬√2 0
0 1

൰ 

Conformation 

𝑨 = ቀ
1 0 0
0 1 1

ቁ =  𝑼𝜮𝐕𝑻＝ ቀ
0 1
1 0

ቁ ൬√2 0 0
0 1 0

൰

⎝

⎜
⎛

0
1

√2

1

√2
1 0 0

0
1

√2
−

1

√2⎠

⎟
⎞

= ቀ
1 0 0
0 1 1

ቁ 

Exercise III. Pseudo-inverse matrix of upper 2 ×3 matrix  

At first, we try to calculate directly by following equation. 

𝑨# = (𝑨்𝑨)ି𝟏𝑨் 

𝑨்𝑨 = ൭
1 0
0 1
0 1

൱ ቀ
1 0 0
0 1 1

ቁ = ൭
1 0 0
0 1 1
0 1 1

൱ 

อ
1 0 0
0 1 1
0 1 1

อ = 0 

We cannot calculate inverse matrix of 𝑨்𝑨, because the determinant is 0. So, we try to 

calculate Pseudo-inverse matrix of upper 2 ×3 matrix by singular value decomposition  

𝑨# = 𝑽𝜮#𝑼் 



𝑽 =

⎝

⎜
⎛

0 1 0
1

√2
0

1

√2
1

√2
0 −

1

√2⎠

⎟
⎞

 

𝜮# = ൭

1

√2
0

0 1

൱ 

𝑼் = 𝑼 = ቀ
0 1
1 0

ቁ 

𝑨# = 𝑽𝜮#𝑼் =

⎝

⎜
⎛

0 1 0
1

√2
0

1

√2
1

√2
0 −

1

√2⎠

⎟
⎞

൮

1

√2
0

0
0

1
0

൲ ቀ
0 1
1 0

ቁ 

=

⎝

⎜
⎛

0 1
1

2
0

1

2
0

⎠

⎟
⎞

ቀ
0 1
1 0

ቁ =

⎝

⎜
⎛

1 0

0
1

2

0
1

2⎠

⎟
⎞

= ൭
1 0
0 1
0 0

൱ 

Confirmation 

 

𝑨𝑨# = ቀ
1 0 0
0 1 1

ቁ ൭
1 0
0 1
0 0

൱ = ቀ
1 0
0 1

ቁ 

𝑨#𝑨 = ൭
1 0
0 1
0 0

൱ ቀ
1 0 0
0 1 1

ቁ = ൭
1 0 0
0 1 1
0 0 0

൱ = ൭
1 0 0
0 1 0
0 0 0

൱ 

 Exercise IV. Singular value decomposition of 3 ×4 matrix  

𝑨 = ൭
2
1

−1

2
−1
1

2
1

−1

2
−1
1

൱ 

𝑨𝑨் = ൭
2
1

−1

2
−1
1

2
1

−1

2
−1
1

൱ ቌ

2 1 −1
2 −1 1
2 1 −1
2 −1 1

ቍ = ൭
16 0 0
0 4 −4
0 −4 4

൱ = 4 ൭
4 0 0
0 1 −1
0 −1 1

൱ 

𝑨்𝑨 = ቌ

2 1 −1
2 −1 1
2 1 −1
2 −1 1

ቍ ൭
2
1

−1

2
−1
1

2
1

−1

2
−1
1

൱ = ቌ

6 0
0 6

6 0
0 6

6 0
0 6

6 0
0 6

ቍ 

Left singular operator 

  Singular value 

อ
4 − 𝜆 0 0

0 1 − 𝜆 −1
0 −1 1 − 𝜆

อ = 0 



(4 − 𝜆)(1 − 𝜆)ଶ − (4 − 𝜆) = 0 

(4 − 𝜆)((1 − 𝜆)ଶ − 1) = 0 

𝜆(4 − 𝜆)(2 − 𝜆) = 0 

𝜆ଵ = 4 × 4, 𝜆ଶ = 4 × 2, 𝜆ଷ = 0 

                                  Rank r=2 

𝛾ଵ = 4, 𝛾ଶ = 2√2 

Σ = ൭
4
0
0

0

2√2
0

0
0
0

0
0
0

൱ 

 

  Eigenvector 

൭
4 0 0
0 1 −1
0 −1 1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 4 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

4𝑥ଵ = 4𝑥ଵ 

𝑥ଶ − 𝑥ଷ = 4𝑥ଶ 

−𝑥ଶ + 𝑥ଷ = 4𝑥ଷ 

−𝑥ଷ = 3𝑥ଶ 

−𝑥ଶ = 3𝑥ଷ 

Eigenvector ൭
1
0
0

൱ 

൭
4 0 0
0 1 −1
0 −1 1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 2 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

4𝑥ଵ = 2𝑥ଵ 

𝑥ଶ − 𝑥ଷ = 2𝑥ଶ 

−𝑥ଶ + 𝑥ଷ = 2𝑥ଷ 

−𝑥ଷ = 𝑥ଶ 

−𝑥ଶ = 𝑥ଷ 

Eigenvector ൮

0
ଵ

√ଶ

−
ଵ

√ଶ

൲ 

൭
4 0 0
0 1 −1
0 −1 1

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 0 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

4𝑥ଵ = 0 

𝑥ଶ − 𝑥ଷ = 0 

−𝑥ଶ + 𝑥ଷ = 0 

𝑥ଶ = 𝑥ଷ 

𝑥ଷ = 𝑥ଶ 



Eigenvector ൮

0
ଵ

√ଶ
ଵ

√ଶ

൲ 

𝑼 =

⎝

⎜
⎛

1 0 0

0
1

√2

1

√2

0 −
1

√2

1

√2⎠

⎟
⎞

 

Right singular operator 

ቮ

6 − 𝜆 0
0 6 − 𝜆

6       0
0      6

6       0
0       6

6 − 𝜆 0
0 6 − 𝜆

ቮ = 0 

(6 − 𝜆)ସ + 6ସ − 2 × 6ଶ(6 − 𝜆)ଶ = 0 

((6 − 𝜆)ଶ)ଶ − 2 × 6ଶ(6 − 𝜆)ଶ + (6ଶ)ଶ = 0 

((6 − 𝜆)ଶ − 6ଶ)ଶ = 0 

(𝜆ଶ − 12𝜆)ଶ = 0 

𝜆 = 12, 0 

ቌ

6 0
0 6

6 0
0 6

6 0
0 6

6 0
0 6

ቍ ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ = 12 ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ 

6𝑥ଵ+6𝑥ଷ = 12𝑥ଵ 

6𝑥ଶ+6𝑥ସ = 12𝑥ସ 

𝑥ଵ = 𝑥ଷ 

𝑥ଶ = 𝑥ସ 

Eigenvector 

⎝

⎜
⎜
⎛

ଵ

ଶ
ଵ

ଶ
ଵ

ଶ
ଵ 

ଶ⎠

⎟
⎟
⎞

,

⎝

⎜
⎜
⎛

ଵ

ଶ

−
ଵ

ଶ
ଵ

ଶ

−
ଵ

ଶ⎠

⎟
⎟
⎞

 

ቌ

6 0
0 6

6 0
0 6

6 0
0 6

6 0
0 6

ቍ ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ = 0 

6𝑥ଵ+6𝑥ଷ = 0 

6𝑥ଶ+6𝑥ସ = 0 

𝑥ଵ = −𝑥ଷ 

𝑥ଶ = −𝑥ସ 



Eigenvector 

⎝

⎜
⎜
⎛

ଵ

ଶ
ଵ

ଶ

−
ଵ

ଶ

−
ଵ 

ଶ⎠

⎟
⎟
⎞

,

⎝

⎜
⎜
⎛

ଵ

ଶ

−
ଵ

ଶ

−
ଵ

ଶ
ଵ

ଶ ⎠

⎟
⎟
⎞

 

Right singular operator 

𝑽 =

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
−

1

2

1

2

1

2
1

2
−

1

2
1

2

1

2
1

2
−

1

2

−
1

2
−

1

2

−
1

2

1

2 ⎠

⎟
⎟
⎟
⎟
⎞

 

Confirmation 

𝑨 = ൭
2
1

−1

2
−1
1

2
1

−1

2
−1
1

൱ =  𝑼𝜮𝐕𝑻 

=

⎝

⎜
⎛

1 0 0

0
1

√2

1

√2

0 −
1

√2

1

√2⎠

⎟
⎞

൭
4
0
0

0

2√2
0

0
0
0

0
0
0

൱

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
−

1

2

1

2

1

2
1

2
−

1

2
1

2

1

2
1

2
−

1

2

−
1

2
−

1

2

−
1

2

1

2 ⎠

⎟
⎟
⎟
⎟
⎞

்

 

൭
4
0
0

0
2

−2

0
0
0

0
0
0

൱

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
−

1

2

1

2

1

2
1

2
−

1

2
1

2

1

2
1

2
−

1

2

−
1

2
−

1

2

−
1

2

1

2 ⎠

⎟
⎟
⎟
⎟
⎞

= ൭
2
1

−1

2
−1
1

2
1

−1

2
−1
1

൱ 


