V-3-5. Singular value decomposition

In case of spectral decomposition, we can decompose symmetric matrix to a product of
orthogonal vectors (eigenvectors) and eigenvalue, because symmetric matrix is quadratic
form and we can draw super conic curve from quadratic form. In the case of symmetric
matrix, the matrix has inverse matrix. When the matrix has inverse matrix, we say the
matrix is regular matrix. Regular matrix is invertible matrix and non-singular value
matrix. Here, we will consider operation of diagonalization of non-regular matrix. This
is a generalization of diagonalization to all real matrix including non-regular matrix.
Singular value decomposition can diagonalize all real matrix. Singular value
decomposition is as follow.
M=UxVT
M:p X n matrix
psn
Z: diagonal matrix espressing magnitude of the matrix
U: orthogonal projection operator

V: orthogonal projection operator
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We do not have any information of ¥, though we hypothesize that there exist U [and |4 //{ a4y FOEM [EA]:
which diagonalize M as follow

UMy =x
Multiply 2T to X
2T =U"TMV(UT™™MV)T== UTMVVTMT U= U"TMM"U
Similarly,

2Ty = (UTMV)TUTMV==V"TMTUU"M U= V" M" MV ii
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Both MMT and M™M are symmetric. The right side of the equations i and ii are
Diagonalization of symmetric matrix. This calculation demonstrates that projection
operators of MMT and MTM can be candidate of left and right single operator. When
we accept the hypothesis.

IXT=UTMM'U = A=

Xt =2
Mathematically, this is correct, though it has problem in form of notation. When we select
U in following equation as left singular operator, UT is p X p matrix, V is nxn

matrix, and M is p X n matrix.
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However, we can understand that the matrix of £ should be p x n, and
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j= i=1



Function §;; is Kronecker delta. Kronecker delta Kronecker delta is following binary

variable.
sy ={LE=N)
Y 0@ #))
An example.

There is a matrix of U, U;

u,” w g ulu, ulTuP
T u,” wu, wu, - uu
Uy Uy=| "7 |[(wg up = Up)= . . . P
u,” w,"uy w,"u, - w,u,
When the factor of the matrix is as follow,
ul-Tuj = 611
We can express the matrix as follow.
811 612 S1p 10 0
U,"Uy = 0z ééz Oz = 0 1 0
Sp1 Opa Opp 0 0 1/ pxp
Y1611 61z v By Oipi by \ Y1 0 « 0 0 0
e R T (O- SO 0)
61;1 51; Yp;spp 6p;7+1 épn/pxn 00 Y 0 pxn
The name of y is single value.
When we multiply U from left V7 from right,
Yi= \//1_1
i 0 « 0 0 0
vormyyr =y| 0 vz v 00 00 pr_ygyr
00 e yp 0 e 0 oxn
uuT™MvvT = IMI =M
M=UzV"T

This is singular value decomposition. We can obtain left singular operator as orthogonal
projection operator for diagonalization of MM” and can obtain right singular operator
as operator for diagonalization of M7 M. This the conclusion of this paragraph. However,

we have to prove the adequacy of hypothesis that there exist U and V
Proof

First step



U= u, W)
UTMM™U = A
Multiply U from left to both side
UUTMM™U =UA

uuT =1
A 0 e 0
Tyr _ s 0 /12 =0 — A
MM'U=UA=(u; u, Up) .. .= Muy Au, pUp)
00 = A
MM"u; = Ju=y u;
Similarly,
V= (Vl v, 7 vn)
VIM™ MV = L*
L2 0 0
12 = 0 l22 0
\ 0 0 - an/
Multiply V from left to both side
VVTM™ MV = VL?
T =1
L% 0 0
2
MMV =, v, *° Va) 0, l.z ) 0. =Ly, Ly, 1 %v,)
00 L’
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M"Mv; = I;*v;
When we replace y; to [y,
/ylz 0 00 - 0\
MMV =(@; v, “ Vn) 0: ;:/22 0 0 0 =(h*v1 1tve o By OVpy o 0wy)
\ 00 = % 0 0/

M™Mv; = y;*v; forj=1~p
M"™Mv; =0,v; =0 forj=p+1~n
Proof of existence of U andV

Existence of V is trivial because V is orthogonal projection operator of symmetric

matrix.
1
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Q.E.D

We could demonstrate that there exist left singular operator and right singular operator

for all matrix and we can denote U =W

Conclusively
M=Uzv"
V1 0 e 0 0 - 0
[0 vz - 00 0
L= ; i 0 9 0
0 0 yp 0o - 0

pxn

We discussed only the case when p < n. In the case when p >n



& 0
r=|o0 o ¥n
00 0
00 0

Formula 72

In several case, M is positive semidefinite (eigenvalue include 0.). The number of
positive singular value is rank (r). r<p

In such case r <p

yi 0 - 0 0 0
0 v, = 0 0 0
H T 0
E=l0 0 = y O 0
00 0 0 9
00 = 0 0 - 0/,
More generally, X can be expressed as follow
z,:( Sr,r or.n—r)
Om—ry Om—yn—r
S, r:diagonal matrix, diag(y1 - V¥r)

diag( ) is diagonal components

Vizyzz 2y >0

0 0
Oi,j= : . :
0 - 0/i

Application of singular value decomposition

4 0 0
M={0 1 -1
0 -1 1

This matrix is linearly dependent (not independent), because third column and third row
are real number times of second column and second row. From this we can judge that
rank of the matrix is 2, because number of linearly independent column and row is 2.
However, judgement of number of rank difficult from dataset is generally difficult,
because we cannot notice the dependency of the row or column, when a row or column is
linear combination of other rows or columns. In addition to this, similar samples are
often included in data set, and many data are approximately the same. In such case, we

obtain several very small singular values which is approximately 0.

X is as follow



Y1 0 0 0 - 0

= O ):/2 0: O :0
00 - Y 0 - 0 oxn
diag(Y1 = Vp)

ViZ2V22 2V 20
The analysts should judge the singular values are 0 or not 0, comparing the singular
values to other singular values, considering the purpose of analysis, drawing their
experience and referring previous works. The work the analysts is judgement of
threshold, which is S'in following inequality
V12V 22V 2S2 V22V >0
Then following X is determined.

1 0 00 0
0 yz = 00 0
P b 0
X=10 0 ¥ 0 0
00 0 0 0

pxn

In case of following matrix

4 0 0\/4 0 0 16 0 0
MMT = (o 1 —1) (0 1 —1) = ( 0 2 —2)
0 -1 1/\0 -1 1 0 -2 2

16—-21 0 0
0 2—-1 =2
0 -2 2-2
(16 -DN2-1N2-1N-4(16-21)=0
A-16)A—4)2r=0
From this we can judge the rank of the matrix as 3—1=2.

A 5

=0

Eigenvector belonging eigenvaluel6

16 0 0 X1 X1
0 2 =2||X)=16(X2
0 -2 2 X3 X3

16x; 16x,
( 2xy — 2x3 ) = (16x2>
—2x, + 2x3 16x3

14x, +2x3 =0



2x, +14x3 =0

X, =x3 =0

.

Eigenvector belonging eigenvalue 4
16 0 0\/x X
=4

< 0 2 =2||*x X2
0o -2 2 X3 X3
16x; 4x,
< 2x, — 2X3 ) = <4x2>
—2x, + 2x3 4x5
12x%, =0
—2x, —2x3 =0
—2x, —2x3 =0
x; =0, Xy = —X3
0
1
e;=| V2
1
V2

Eigenvector belonging eigenvalue 0

16 0 0\ /%
0 2 =2||X]=0
2 X3

0 -2
16x, 0
( sz y 2x3 ) - <0)
—2x, + 2x3 0
x; =0
2x, —2x3 =0
—2x;+2x3=0
x; =0, Xy = X3
0
1
e;=|v2
1
V2
Result of singular value decomposition is as follow.
1 0 0
o L L
Left singular operator is V2o vz .
101
R



0 0

S

Right singular operator is VZ V2
1

V2.

1 0 0 1 0 0 1 0 0

0 i i 4 0 0\[o i _i 4 0 0 0 i _i
V2 V2 lo 2 0 V2 V2 |=[(0 V2 o V2o V2

0 L i 000 0 i i 0 —V2 0 0 i i
-2 V2 V2 V2 V2 V2

4 0 O
= (0 1 —1)
0 -1 1

This is means that left singular operator equals to right singular operator in singular
value decomposition. This is understandable when we consider power method of
symmetric matrix.
In symmetric matrix,
MM" = M"M= M?
Matrix M is decompose as follow.
M = UAUT
Using power method of symmetric matrix
MM" = M™M = M? = UA*UT
From this we can accept that diagonalization of symmetric matrix is a specific case of
right singular decomposition in which left singular operator equals to right singular

operator.

Figure 61 is illustrating the procedure of singular value decomposition. In
this illustration the matrix M is transformation of unit circle and yellow vector (A)
to inclined ellipse and yellow vector (D). When there exists inverse matrix M~1, inverse
operation is multiplication of M~1. However, there are several conditions for existence
of inverse matrix. Particularly, non-square matrix has no inverse matrix. Singular value
decomposition provides alternative detour root of inverse operation. Matrix V7 is

rotation, matrix X is expansion and contraction, and U is rotation.
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Fig. 61 Procedure of singular value decomposition and inverse operation.

The process A — D is expressed as follow
MA =D
The process D — A is expressed as follow
M~*MA =MD
A=M"'D
However, we cannot obtain M~!. The alternative route of M is VI - X — U. This is

expressed as

M=UzvT
y: O 0 0 0
0 v 00 0
: 0
r=|0 0 % 0 0
00 0 0 0
00 0 0 - 0

pxn
Converse route is UT » X — V. This procedure is expressed as follow
M =vztuT
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=
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M*: Alternative motrix for inverse matrix (pseudo — inverse matrix)

A=MD
Pseudo-inverse matrix has similar function as singular value decomposition. Let clarify
the relation between pseudo-inverse matrix and singular value decomposition. The
formula of pseudo-inverse matrix is as follow

M* = M"M)IMT
Using diagonalization of symmetric matrix
M™™ =vz2vT
(M™M)t =V g2yl = vyt
MT = (Uzvh)T =vzuT
M* = (M"M)*M" =VERVT VEUT = vETIUT

M = m*
We could confirm that inverse operation of singular value decomposition is pseudo-
inverse matrix. This means that when we consider small singular value as 0, we can
decrease the rank for approximate calculation. This is the base of Principle component

analysis.

Exercises for clear understanding

Exercise I. Singular value decomposition of 2 X 2 matrix
0 2
A= (1 0)
Calculation of singular value and left singular operator
r_ (0 =270 1\ _(4 0
a4 ‘(1 0 )(—2 0)‘(0 1)

Eigenvalue and eigenvector

4—2 0 |_

|0 1—,1|‘0

@4-200-1=0
A=41

Eigenvector for 1 =4
(o DG)=+()
X =X

Xy = 4x,

x; =tand x, =0,



Eigenvector for 1 =1
666
4%, = x4
Xy = Xy
x; =0 and x, =t
()

Left singular operator

-G )
v- =)

Calculation of right singular operator
aa=(5 00 9= 2

Eigenvalue and eigenvector

|1EA 48,1|:0

“@G4-D1-1»=0
A=4,1

(0 () =4G)
X, = 4xq
Xy = X3

()
(0 HG)=1()

X, =X
4x, = x,
X =ty

x; =0



1 0 1 0
Y1:\/}‘—1:\/Z:2
Y2 = 7\2=\/T=1
2 0
£=(0 1)

Confirmation
0 D=ow=(3 DC OC =G 9C D=0 )
Exercise II. Singular value decomposition of 2 X 3 matrix

4= 1 1)

Rank of this matrix is 2

Left singular operator

1 0
r_(1 0 0 _(1 0
e 1)<0 1>_(o 2)
01
Eigenvalue is A = 2,1 and singular value y; = V2, and y; = 1.

Eigenvector
(o 2Ga)=2()
X1 = 2x4
2%, = 2x,
x; =0,x, =t
(o 2Ga)=()
X =X

2%y = X,

x1=1x,=0

-G Y- =)

Right singular operator



1 0 1
1 0 0

ATA = (0 1)( )= (0

0 1 01 1

Eigenvalue and eigenvector

1-2 0 0
0 1-2 1
0 1 1-2
a-2-1-1=0
a-D@-D*-13=0
A1-1D2-1)=0
A=2,1,0
Rank of 4 is 2

1 0 0\ /% X1
0 1 1)[x|=2(x
0 1 1/\x3 X3

X1 = 2x4

Eigenvector for A = 2

Xy + X3 = 2%,

Xy + X3 = 2x3

Eigenvector for A =1

1 0 0\ /* X1
(0 1 1) <x2> =1 <X2>
0 1 1/\x3 X3
X1 =X

Xy + X3 =X,

X, + X3 = X3

9

Eigen vector for A =0

1 0 0\ /* X1
(0 1 1) <x2> =0 <X2>
0 1 1/\x3 X3

X1 = X1



X, + x3 =0
0
—t
(= 1
V2
0
1
V2
1
V2
Right singular operator
0 1 0
1 1
v=|+2 V2
1 1
— 0 —-—
V2 V2
1 1
0 — —
V2 V2
VT = 0 0
1 1
0 — ——
V2 2
(7 9
0 1
Conformation
1 1
AR
a=(t 0 O yryr=( 1)(ﬁ 0 0) RS (209
01 1 1 0/\yg 1 o0 1 1 01 1
0 — ——
V2 2

Exercise II1. Pseudo-inverse matrix of upper 2 X3 matrix
At first, we try to calculate directly by following equation.
A# = (ATA)—lAT
1 0 1 0 0
ATA = (o 1)((1) (1) 2): (0 1 1)
0 1 01 1
1 0 0

011
011

We cannot calculate inverse matrix of A4, because the determinant is 0. So, we try to

=0

calculate Pseudo-inverse matrix of upper 2 X3 matrix by singular value decomposition
A* =vxtuT



01 0
L, 1

V=|v2 V2
1 1
— 0 -—
V2 V2

10
0 1 0
1L, 1 1 %
at=veror=|V2 - vz (V2 |0 )
1 10110
— 0 ——
> 7/ N0 0
0 1 10
1 1 10
=20(01)_02=01
1 10 1 0 0
_0 0_
2 2

Confirmation

=G5 9o 16 )

0 0

10 100 /100
A#A=<o 1)((1) (1) ‘;):(0 1 1>=<0 1 0)
0 0 000/ \o o0 o0

Exercise IV. Singular value decomposition of 3 X4 matrix

2 2 2 2
A= ( 1 -1 1 —1)
-1 1 -1 1

2 2 2 20/ 1. "N 16 0 o
AAT=<1 -1 1 —1) a1t =<0 4 —4>=4<
-1 1 -1 1 2 1 1 0 -4 4
2 1 -1 2 2 2 2 6 0 6
ATA= 2 -1 1 1 -1 1 1= 0 6 0
21 =\ T T 6 0 6
2 -1 1 0 6 0
Left singular operator
Singular value
4-1 0 0

OO O



Eigenvector

G-DA-D2=@A-D)=0
@G-NA-»2-1)=0
A4-D2-D)=0
M=4%x41,=4%x2,13=0

Rank r=2
ri=4v,=2V2

4 0 0 0
%= (o V2 0 o)

0 0 0

4 0 0 X1 X1
(o ; _1) () _ 4()
0 -1 1 X3 X3

4xq = 4x4
Xy — X3 = 4x,

—Xy + X3 = 4x3

—x3 = 3%,
—X, = 3x3
1
Eigenvector | 0
0
4 0 0 X1 X1
0 1 -—1)[x2])=2(x
0 -1 1 X3 X3
4x, = 2xq

Xy — X3 = 2X;
—X; + X3 = 2x3
—X3 = X,

—Xy = X3
Eigenvector

3966

4x1 =0

mﬁ'“"

X; —x3 =0
—x;+x3=0
Xy = X3

X3 = Xy



0
X
Eigenvector | vz
1
Vz
1 0 0
0 1 1
U= V2 V2
1 1
0 —— —
V2 V2
Right singular operator
6—1 0 6

0
6 0 6-21
0 6 0 6-1

(6=D*+6+—2%x62(6-2)%=0
((6=1)2)2 =2 x62(6 =12+ (62)2 =0
(6-21*-62*=0

(2-120)%=0
1=12,0
6 0 6 0\ /% x
0 6 0 6\[x2)_ X,
6 0 6 0flxs]=12x
0 6 0 6/ \xa X4
6x,+6x3 = 12x;
6x,+6x, = 12x,
X = X3
Xy = Xy
1 1
2
LN
Eigenvector i ,
3 1
1) \12
2
6 0 6 0\ /%1
06 0 6|l%|_,
6 0 6 0f\x3
0 6 0 6/ \X
6x,+6x3; =0
6x,+6x, = 0
X1 = —X3

Xy = =Xy



Eigenvector (

Right singular operator

~
Il
=~

Confirmation
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