VI. Multivariable analysis

Vi-1. Optimization

Vi-71-1. Multiple /inear regression analysis

Vi-71-71-1. Multiple [inear regression by pseudo-inverse matrix

When the explanatory variable in only one, objective variables can be explained a
coefficient of the explanatory variable, explanatory variable, a constant and error as
follow
y=ax+b+e
y: Objective variable
x: explanatory variable
a: coefficient
b: constant
e: error, ionexplicable residual
This regression is called simple linear regression. When there exist more than one
explanatory variables, the relation is expressed as follow and we call the operation as
multiple linear regression.
y=ag+ax; +ax, ++a,x, +e
y: Objective variable
x;: explanatory variable
a;: coefficient
a,: constant
e: error, ionexplicable residual

There are various ideas, models and methods for optimization. Least square method and
most likelihood method are commonly used method for optimization. It is known that
the result regression by most likelihood method agrees to the result by least square
method when the likelihood method hypothesizes normal distribution. The author

explains multiple linear regression as least square method using pseudo-inverse matrix.

When there is following data set,
Y1, X11,X21 " Xp1
Y2,X12,X22 *** Xp2

Y3,X11,X23 *** Xp3

Ym X1my Xom " Xpm



The relation can be expressed as follow
Y1 = dg + di{Xq1 + dyX1 + -+ apxp1+ €1
Y2 = dg + diXqp + dzX5o + -+ apxpz + ey

Y3 = dg + diXq3 + dyX53 + -+ apxp3 + e3

VYn = dg + di1X1m + drXom + -+ apxpm + €m
The relation can be expressed as follow
y = ao + alxl + azxz + -+ apxp +e

dy: constant term

do
ap
=@ x X)) |+e
dp
Putting
do
yl 1 x11 o xlp al 61
Y = ) X+1— : : " : ) A+1— : ) E =
In 1 xp1 7 *mp a, en

Y=X,,A,1+E
We learned that pseudo-inverse matrix (X +1#) gives optimum solution of 4., by least
square method in paragraph “V-3-4. Optimization and pseudo-inverse matrix”.
Ay =X4"Y
Formula 73
Pseudo-inverse matrix (X +1#) can be obtain by direct calculation of inverse matrix or
inverse operation of singular value decomposition as follow.

-1
X+1# = (X+1TX+1) X+1T

or
n n
n ijl ijp
]':1 ]:1
1 1 n
X X Do Zx.
X+1TX+1= 11 n1 : : = = J1
cee x =
xlp oo xnp 1 xnl np E XTX
n
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A 0O ... 0
0 2
U'X'Xu=x=|, 7 0



M2z 22,>0

In reality, the operation by upper equation is hard task. Inverse matrix can be calculated

by inverse operation of singular value decomposition.

X* =vxtuT
1 x4, ™ X1
X X..T=|: : . . X11 Xn1
+1 +1 — . . . . E '.. S
1 x. e xnp
ni xlp xnp
VX1 X'V =2y
! 0
— 00
Y1 0
0 i 00 0
Y2
[ : 0
=100 .. 1
— 0 0
0 0 Yr
. 0 0 0
00 :
0 0 0

nxp

y; = A; = thresholod value

Vi-1-1-2. Geometric meaning of multiple regression

In this paragraph, we consider geometrical meaning of multiple linear regression. At
first, we consider the distance of a point and hyperplane, because meaning of the
regression is to explain the distribution by a hyperplane of which average distance
between the hyperplane and datapoints is minimum. Figure 62 shows equation of

hyperplane including origin. Coordinate originis O : (0 - 0).
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plane: a,x; + a,x, r+ -+ a,x,=0
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Fig 62. Formula of hyperplane including origin.

The hyperplane is characterized by normal vector OH which is orthogonal to the hyper



plane.
OH=(a a, " )
OW is vector on the hyperplane.
OW = wo wy T Wo)

OH L OW
wo wy 0 Wp)[ o [=0

agwo + aywy +-apw, =0
For simplification, we take unit vector of normal vector (U).
a’+a;* ++ayt=1
We consider a parallel hyperplane to the hyperplane including origin as a general
hyperplane. The point on the parallel hyperplane is X(*o ** Xp). The distance from
the hyperplane including origin is t. The length of t is constant and normal vector from

the hyper plane including origin to X is WX.

%3 ~2
lane’ ag Wg+ a;wy + -+ aw=0
Fig 63. Points in a hyperplane
WX=0X—-0W=¢t(@ - ap)
(xo — WO xp _Wp) — t(ao ap)

We take inner products of both sides.

Qo Qo
(xo —Wy Xy _Wp)< : ): t(@ - ap)< : )
ap ap

agXg + ayx; + - apxy, — (agwp + aywy + - apwy) = t(ag? + a2 + - + a,?)

ApXg T A1Xy + - ApXp =t



v agwo + awy +rapwy, =0
ay’ +a;’ + -+ ap2 =1
From this we express hyperplane by following equation
ApXg T A1Xy + - ApXp =t
In case of ay” + a;* + -+ a,” = 1, t is distance from the hyperplane to origin.
The author explains an optimization, which is a kind of regression but is not
general multiple regression.
ag'xgtay %+ +ap'x,=c
c: constant

When all data exist on the hyperplane

1
XA’zc(E)
1/ nx1
X0 " X1p Qo
(2 2) )
Xno ° Xnp ap

nxp

agxg + a1xy + -+ apx, =1

1
XA=|:
1 nx1

Generally, all data do not exist on the hyperplane and matrix X is not regular.

)

XA_(Q:E
()

€j: error

We consider error term.

We minimize ETE by pseud-invers matrix X*

el
XA=®+E

1
X#XA=X#<E>
1



)

This is not generally used multiple regression. Multiple regression is used for
expression of relation between an objective variable and other explanatory variables,
though this equation expresses the relation among all explaining variables. However, we
can say that this is a kind of multiple regression. generally multiple regression is used
for

We have to fix a variable as an objective variable and the coefficient of objective variables
should be 1. Generally objective variance is denoted as y. Some readers may think
indiscreetly that we could get solution as follow.

agxp + a1xy + -+ apx, =0

Divide both side by a,

ap
x0+_x1+' +—Xp=—
0 Qo Qo
a;
xo = - (—x1 + - +_pxp)
0 Qo

. a;
We rewrite —— as b;, x, asy.
QAo

y=byx; + -+ byx,
When we add intercept,
Yy =byxy + -+ byx,te
We do not need to consider ¢, because we can transform y’' =y —c.
However, this is not optimum solution for explanation of y, because coefficients of the
formula is selected as optimum coefficient for explanation of total relation among

variables not for explanation a particular variable.

The reader can understand reading following trial.
When we denote ay = —1x, =y
The formula of the hyperplane is as follow

y—(ax; + -+ apx,) =0

The distance from a point, D;: (dy i Ay Ay j) in hyperspace to the hyperplane is
as follow
d. = |dy; = (@1daj + - + Bpdap))| _ les]
! JIE+ a2+ +a,? JIE+ a2+ +a,?

2

We should minimize Z}‘zl d;” not Z}Lzl ejz. We could not remove dominator, because



\/12+a12+---+ap2 #1

d;j + ¢
We have to consider another approach.
When we denote objective variables as y, we need to find optimum hyperplane which
minimize the distance between observed objective value and the hyperplane along with

y axis as shown in figure 64.

erplane: ¥ = a;x; + azx; + - ayx,

Fig. 64. Distance in y axis from data point and hyperplane.

For simplification, we consider the case when y intercept is 0. Such distribution is simply
obtainable by subtracting average value of variables, and we can simplify the operation
by this transformation.
When the matrix X is regular, we can solve following equation
Y=XA
, and express the relation as follow
Y = a1Xy QX + o QpXy
However actually, observed y include error. The equation is expressed as follow.
Y =a1X; tazx; +apx, +e

Y=XA+E

()

e;: error
We need minimize ETE.
We calculate approximate solution of following equation.
Y=XA

V1
XA:(s>
Yn



Y1
X*XA = X#< : )
Yn

Y1
A=X"|:
Yn

Upper explanation is a practical method to simplify the matrix and calculation. However,

Intercept

we need to remake the converted dataset from row dataset as follow.

y=dy,—d,
xij = dij — d
d: original data

d, and d; 1s average

n
-1
d] = szij

Then we put this in following equation
Y = a1Xy QX + o QpXy
dy — dy=a,(dy — dy) + ay(d, — d) + - + a,(d, — dpy)
dy=a;d; + ayd, + -+ apdy, + dy, — (aydy + azdy + -+ + apd,y)
Then we can obtain intercept as follow.
d_y - (ald_l + azd_z + et apd_p) = ay

If we feel this process is tangled, one possible idea for estimation of y intercept directly
from the original dataset is to make constant term in matrix X and A as shown in the

introduction of operation.

Qo
yl 1 x11 xlp al 61
Y=|(:], X =|: : : ), A= | E=|:
Yn 1 Xp1 Xnp a en

p

Y=X,4,+E
Ay =X1"Y
dy: constant term
More practical solution is assignment of equation of transformation to the equation of y

and x after getting t A.



a
y=(% - xp)( : ) = a1X1 + AxXp + - ApXp
y=d

d: original data

d, and d; 1s average
n

g=-)
Ay Xij
=1
n
=2y
y_n. Vi
=1

Y = a1Xy T QX + o QpXy
dy — dy=a,(dy — dy) + ay(d, — ) + - + a,(d, — dpy)
dy:a1d1 + azdz + -+ apdp + d_y - (ald_]_ + azd_z + -+ ap@)
d_y - (ald_1+ azd_z + et apd_p) =ay

This is excursus. What the author wants to say in this explanation is that axis of
objective variable is normal vector of the hyperplane of explaining the relation among
explanatory variables. The equation of the multiple regression is obtainable by moving

the hyperplane to include the point of mean of all variables.
VI-1-1-3. Exposition by differentiation and simul/taneous equation

Using pseudo-inverse matrix, the author can easily introduce operation of multiple
linear regression. However, pseudo-inverse matrix is a kind of black box for readers who
do not have knowledge of linear algebra. The author adds detailed exposition using only

differentiation and simultaneous equation for such readers.

Example of data set

Explanatory variables Objective variable

Sample no. O 1 2«1 -p y
1 ag dyg dyp-rdye d1p dly
2 ag dpy dyp - dyi de dyy
k ag diq dyg -+ dy -+ dxkp dky

n QAo dnl dnz dni dnp dny



dky = Qg + aldkl + azdkz + -+ aidki + -+ apdkp + €k
€r = dky - ( ao + aldkl + azdkz + -+ aidkl- + -+ apdkp)

2
ey’ = (dky - ( Ay + ardps + apdyy + -+ agdy + oo+ apdkp))

n n
2
E = Z ekz = Z (dky - ( ap + aldkl + azdkz + -+ aidki + -+ apdkp))

k=1 k=1
It is obvious that E has minimum value. We calculate a,,--a, and a,,; which gives

extreme value of E by differentiation of E by ag, - a,

dE

da, 0

When we denote

Fk = dky - ( ao + aldki + azdkz + -+ aidkp)

n
E= Z F2
k=1

dE _ dE dF,
da; dF, da;
n n
dE
E =2 Z Fk =2 Z (dky - ( o + aldkl + azdkz + -+ aidki + -+ apdkp))
k=1 k=1
dF,
dF,
d_ao 2n
n
dE
E =2 Z (dky - ( Ao + aldkl + azdkz + -+ aidki + -+ apdkp)) dki =0
! k=1
doi = 1
n n n n n
dE
o= ) digdii = G0+ ) dig 1 ) diadia + %3 ) diadg o+ % ) digpdi | =0
Lok k=1 k-1 k=1 k=1

n n n n n
a; Z di1dy; + a; Z diady; + -+ ay Z Aipdyi + Apr Z dy; = Z ey dii
k=1 k=1 k=1 k=1 k=1

When we rewrite this equation by form of simultaneous equation

n n n n
na0+alzdk1+ aZde2+---+apdep=dey
k-1 k=1 k=1 k-1

n n n n n
[ Z dy +a; + Z dg1diy + a Z diadyy + -+ a, Z dipdyr = Z iy diey
k=1 k=1 k=1 k=1 k=1



n n n n n
+ag Z diz + a4 Z di1dyz + ay Z diadyz + -+ a, Z dipdiz = Z diydiz
k=1 k—1 k=1 k=1 k-1

n n n n n
+a0 Z dkp + aq Z dkldkp + a,; Z dedkp + -+ ap Z dkpdkp = Z dkydkp
k=1 k—1 k=1 k=1 k-1

We can get ag, a;,-*,a, as solution of upper simultaneous equation. For clear
understanding of the relation between solution by pseudo inverse matrix and solution
by differentiation and simultaneous equation, we express the simultaneous equation in

form of matrix

n n n
no A Qde v ) d
k-1 k=1 k=1
n n n n
Dy Y’ Y dada Y dydi | g,
k=1 k-1 k=1 k=1 a,
n n n n .
Yo Ydude gt v D dgdio |\q
k=1 k=1 =1 k=1
N H " H N H ‘. N H
Yy Y dady Y dudy, Y dy,
k=1 k-1 k=1 k=1
1 . 1
d
— dyp - dng ;1y
dy, dpp1) \Iy
Equation i
We denote matrixes as follows.
1 dyy dlp
: =Dy
1 dnl np nx(p+1)
Qo
a,
;| = A
ap
dly
: =Y
dpy
1 1
D+1T — déll d‘gll
dip dnpl



" kn—l nk=1
Yda Dda' ) digdia

1 1
d d \ 1 dig dlp k=1 k-1 k=1
D+1TD+1 = e z,ll CR = " L L
\dlp dnp]-} 1 dy np kz::l di2 ]; d1dy2 ]; diz
n . n : n
Z dip z di1dyp z dizdip
= = =1

equation i can be expressed as follow.
DDAy =Dyq'Y
Multiply(p.,"p,,)”" to both sides.
(D+1TD+1)71(D+1TD+1)A+1 = (D+1TD+1)71D+1TY
A= (D+1TD+1)71D+1TY
(D+1TD+1)71D+1T = D+1#

D,,": pseudo inverse matrix ofD,,

We could confirm identity of solution by pseud inverse matrix and solution by

differentiation and simultaneous equation. However, this is excursus. Going back to

mainstream.
When we neglect constant term, the relation can be expresses as follow
DA=Y
A=D"y
(D™D)"'D"DA = (D"D)"1DTY
A= (DTD)"1pTY

n n
Y Y dady

k-1 k=1

n n

d ces dn d e d

o7 DTS B

dlp ces dnp d, dnp k=1 k=1

n n
Y dady, Y digdy,

k-1 k=1
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SS21 SS12 v S5 v SSon

s=DTD

$S11 SS12 0SSy - SSln\|
| SSy SS; v SSi e ssjn/I

SSn1 SSpa v SSpi v SSmn

Using this notation

dyy o dy dly | =1
DTy =% =~ i = :
dlp dnp dny n
Z dkpdky
k=1

DDA = DTy

SS1y
sA=| :
SSPJ’
SS1y
A=S"1| :

SSpy

This simplest expression of the solution. The author loves simple expression, though
some readers feel frustration with simple expression, because we cannot understand

operation of calculation from simple expression. Followings are example of operation.

Sample no. 1 2 3 y
1 di; dyz dis diy
2 dyy dyp das dyy
k diy k2 dis diy
n dpi1dny  dps dny

dy vodg\ sy v dy\  /SSyy SSi;  SSis
S = DTD = < : " : )( : - : ) = (SSZl 5522 5523)
dl o d d P 5531 5532 5533

P np n1 n
dyy o dy dly SSly
... dny SSgy

Calculation of determinant



5811 SSi12 SSi3
S§S;1 S8, SS»3
S§S31 SS3; SS33

S| =

= 551155228833 + 5512552358531 + 551355218535 — 551355225531
- 551255215533 - 551155235532
= 551155225533 + 551255235531 + 551355215532 - 551155232 - 552255132 - 553355122

Cofactor matrix §

SSy2 SSys| |SSx SSas|  [SSa SSa| \ '
SSay SSas SSa; SSisl  1SSs  SSs,
S_| _|SSt SSis| |SSi SSis|  _|SSu SSi
SSay SSisl  |SSs; SSas SSay  SSa| |
SS1, SSis| _|SSuz SSis|  |SSu SSi
SSy,  SS,s SSy; SSyal 1SS, SS,,
Matrix § is symmetric
s=37
s1= S
~155; SS1; SS:3
SS,1 SSy, SS,
SS3; SSi, SSa
Sy, SSi| _|SSiz SSis|  |SSiz SSis
SSi, SSa SSsy SSial  ISSy, SS,s
ISSa1 SSys|  |SSi1 SSis| _|SSi SSis
SSa; SSisl  |SSs; SSas SS,; SSys
SSy1 SSy| _|SSi1 SSiz|  |SSi SSiz
o1\ ISS31 S SSa; SSi,| 1SSy, SS,,
SS1; SSi; SSi3
SS,; SSy, SS,
SS3; SSi, SSa
@ SS1,
(a2>=5‘1 SSZy
as SSs,,
Sy, SSy| |SS1z SSis|  |SSiz SSis
o SSs,  SSas SSs, SSazl 1SSy, SS,s sS,,
o) = 1 _[SSa1 SSiw| |SSu SSi|  _|SSu SSu| (s,
SS1; SS1; SSi3 SSa; SSisl  |SSs;  SSas SS1 SSysl [\ oo
SSy1 SSy SSys|\ 1SS SS;| |SSu SSi|  [SSu SSi 3y
SSi; SSi, SSazl \ |SSi,  SSa, SSa; SSio| 1SSy, SS,;
SSy,  SSys ISS12 SSi SSi,  SSi
SSsy SSss| 1Y TSy, SS..|55% Tss,, s5,,|5%3

1 551155225533 + 551255235531 + 551355215532 - 551155232 - 552255132 - 553355122



|SS21 SSa3 SSy;  SSis |SS11 SSi3
_ S5531  SS33 SS31 SS33|™" 1SSp1  SSy3
551155225533 + 551255235531 + 551355215532 - 551155232 - 552255132 - 553355122

SS

S5y, +

SS3,

2

58,1 SS5; S$S11 SSi2 §811 SSi2
5831 SS3; S§S31 SS3; S$S1 S5,

B 551155225533 + 551255235531 + 551355215532 - 551155232 - 552255132 - 553355122

SSly - SSZy + SS3y

3

The author proposes following notation system

S|

SSU =SSt

8§85, SS53 8812 SSis 581, SSi3
S§S3,  S§S33 553, SS33 55,5 85,3
CISS;1 SSy|  |SSi1 SSis| _|SSu SSis
5831 SS33 5831 SS33 §S5,1 SS,3
55,1 SS,; 8511 Sz 5511 SSi2
-1 5831 SS3; S§S831 SS3, 55,1 S5,
§5811 SS12 S8y
S§S,1 SS,5  SSys
8831 SS35  SS35
8§85, SS53 _|8812 SSis S§S12 SSi3
S§S3,  S§S33 553, SS33 55,5 85,3
CISSs1 SSy3|  |SSi1 SSis| _|SSu1 SSis
5831 SS33 5831 SS33 S§S5,1 SS,3
5551 SS,5 8511 SSi2 §511 SSi2
_ 5831 SS35 5531 SS3, 55,1 S5,
S|
8§85, SS53 S§S12  SSi3 S§S12 SSi3
S§S3,  S§S33 _ 15832 5533 55,5 85,3
S| S| S|
_|SS21 SS23|  |SS11 SSu3 SS11 SS13
SS31 8833l 15531 SS33l  _ [SS21 S5
S| S| S|
5851 SS,; 5811 SSiz S§S811 SSiz
5831 SS35 _ 5531 SS3, 55,1 SS5,5
S| S| S|
5511 5512 5513
= 5521 5522 5523
55‘31 5532 55‘33
i = i,j cofactor of S




(5511 55117) S§511  SSip

ssP1 ... SSPP/\SS,1 - SSpp
Using this notation system
a; = S51S8;, + 5512585, + §5135S3,,
a, = SS?'8S,y, + S5%288,, + 553583,

az = SS3158,,, + 553255, + 5533883,

Vi-71-1-4. Significance of regression
Estimation of optimum A is not so complicated, however we should consider the
significance of the estimation and should discuss separation of variances for significance
test.
The relation among observed y, estimated y and error is simple
y=yte

Here, we consider data standardized by mean. When we calculate square of y.

y2 = +e)? =9% +29e + e?

Sum of square is as follow

j=1
When second term or right s1de 1s 0, we separate Sums of square as follows
Sum of square of objective value: SS,, = Z yjz
=1
n

Sum of square of expactation value SS; = Z 3’/}2
=

n
Sum of square of error SS, Z

We expect Z}‘zl yjej to be 0, though we cannot conclude Z i=19;¢; = 0 from the formula

Proof 2?21 5}131 =0
Using pseudo inverse matrix

A =Xy = (XTX)"1XTy

Y=XA=XX"X)"XxTy
Y=1Y
I': unit vector

E=Y-Y=(U-XXTX)"1xT)y



XTE=XT(I-XX"TX)"'x")y =0
XTI -XXTX)71XT) = XT - XTX(XTX) " XT=XT-XT =0

ATXTE =0
ATXT = (xA)T =yT
YTE=0

n
j=1
Q.E.D

We can conclude that

In the paragraphVI-1-1-2. Geometric meaning of multiple linear regression, we proved
SS, = SSy + SS,
n

n n
SS, = Zyjz, SSy = Z)’/}Z, SS, = Z e
j=1 ' '

Degree of freedom of total SSisn — 1, degree of freedom of SS, is n —p — 1, and degree
of freedom of regression is p.
From this, we can summarize the result of multiple regression as Table 43.

Table 43. Summary of result of multiple regression analysis

factor SS degree od freedom variance (V) ratio (F)
SS,
total SSyy n-1 v, = n__R1
regression SSk D Vg = % Fo = ‘;_R
idual SS —p—1 v, =R
residua . n—p b=

We can apply F test to this result. Null hypothesis of this analysis is

G =a="=0a,=0
Personally, the author is thinking that the analysis has little practical meaning, because
we usually do not implement multiple variance analysis among factors which has
unlikely possibility of no relation and we do not get any merit when the null hypothesis
is rejected. Generally, we want to know power of explanation of the regression expression.

For this purpose, we use coefficient of determination. Coefficient of determination is



ration of explained variance in total variance.

SSy  Xi1¥i®  SS,—SSe _ SSg

R? =

SS,, ;-l=1 yj? SS,, SS,

R = SS)’} = Z?:]'yjz
SSy =17

R?: coefficent of determination

R: multiple correlation coefficent
Multiple correlation is intuitively understandable indicator of availability of regression
expression. However, this indicator has mathematical weakness. The multiple
correlation coefficient increases with increase of number of factors, and it reaches 1,
when the number of factors comes into the number of data. Because, the data set matrix
is regular, when n = p. As an example when we gather 10 people and ask them the
money they have, then measure the length of ten fingers, the multiple regression
analysis of the relation between amount of the money and length of ten fingers gives
R? = 1. Degree of freedom adjusted determinant coefficient of determination is
recommendable as evaluation of availability of regression expression. Adjusted

coefficient of determination uses ratio of variances of total and error.

SSs
Vg = ———
¢ (m—-1-p)
— SS)’
Vt = e
v, SS; (n—1)
RZ . =1-Cf=1-22SC_~" -7
adj vy SS,(n—1—p)

Rzadj: Degree of freedom adjusted determinant coefficient

p: In this, case p include constant term. number of explanatory varianceisp — 1

In many cases, we want to know availability or importance of each explanatory variables.
One important purpose of multiple variance analysis is simple explanation of
phenomenon. It is better to cut off meaningless variables. Simply, we compare absolute
values of regression coefficient. However, generally we use different unit of measurement
among variables such as m em mm, dollar, kg, ton number of pieces and so on. When we
compare the value of coefficient between variables measured by mm and cm, the value
of coefficient is 10 times higher in the variable measured by mm. Generally, we cannot
compare values of coefficient directly. However, such comparison is possible when all

variables have same variances. One possible ide of such analysis is to standardize the



data by dividing all value by deviation of each variable. The author does not recommend
this approach. Analytical method should be selected by analyst, because only analyst
knows purpose of analysis. In the case when we analyze happiness of the people and
items of family expenditure, all explanatory variables are expressed in amount of money.
In this case several items such as expenditures for entertainment and culture has large
variances though expenditure for food is stable. However, amount of expenditure has
important meaning, in such case standardization by deviation is not recommendable.
T test of coefficients of variables can be used for selection of variables. As in explanation
in analysis of variance, T test is comparison between observed t and stochastically
calculated critical value of t. Null hypothesis is that 0 is included in error range of
estimated coefficient.
So, t value of coefficient is obtained by dividing distance from 0 to coefficient a; by
standard error of the coefficient SE;.

a;—0

t=
SE,

We consider SE;

The total standard error is

v,

SS,
Vv, =——
¢ (m—-1-p)
Here, we apply our local notation system.
(SS11 551;))(5511 SS13>
sspl ... gspp/ \S8S3; -+ SS33
S§si1 ... gg1p
When we consider < : : ) is sharing of total standard error.
Sspl ... §QPP
Among the factors in the matrix, (ssi* ... §s») 1is factors determining a; .
§sil ... ggip are the ratio of determinant of § and cofactor. SS* means factor

determining a; butindependent from SS,;. This is the ratio of variance of error of a; in
the total variance.
ve

SE; = |sSii=
n



Table 44 is an example of summary of result of the t tests.

Variable  Coefficient Standard error t P value
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P can be obtained from computer software or tables in statistic books.

Using results of t test, we can get useful information for the selection of significant
variables. However, there are effects of combination of variables. When the purpose of
multiple variance analysis is making mathematical model, we must test various
combination of variables. There are several systems of searching method of combination
of variances.

When the number of candidate variable Including combination effect is small, we can
implement round robin test. However, it is not realistic, when the number of candidates
is large. We rise and fall the number of variables in the combination of variables by fixed
rule and indicators in such case.

Forward selection method: Starting from simple linear regression between objective variable and the
explanatory variable which shows smallest P in t test. Then we add next explanatory variable which
shows second smallest P observing degree of freedom adjusted determinant coefficient. There are
several indicators of explanatory poser of regressed equation. Here we use degree of freedom adjusted
determinant coefficient. When the coefficient increases, we accept the variables as explanatory
variable in the model. Then repeat same operation inputting variables which shows next smallest P to
reach at stable phase in degree of freedom adjusted determinant coefficient.

Backward selection method: Starting from multiple variance linear regression between objective
variable and all candidate of variables. The remove variable which shows largest P in t test. Repeat
same operation until reaching previously determined threshold of freedom adjusted determinant
coefficient.

Stepwise selection method: First operation starts from multivariance analysis of fixed number of
variables. We can use the result of diagonalization for determination of starting point. We can

determine the rank from eigenvalues considering small eigenvalues are practically 0.



Then add the variable when the statistic value increase with addition of new explanatory
variable. If there exists variable whose statistic value is decreased, we can kick out the

variable from the model.

There are several statistical indicators including Akaike’s information criteria, and there
are several manual books of selection method. Readers who want to use multiple linear

regression for modeling, please refer those manuals.

Another mathematical weakness of multiple linear regression is existence of
multicollinearity. Multicollinearity is phenomenon in which several explanatory
variables have correlation. When there exists multicollinearity, the result of regression
is unstable, because variables which have correlation attract coefficient among them and
we cannot fix the model by exploratory method. When there exists multicollinearity, we
should select a representative variance from the variables which have multicollinearity
or have to make a synthesis variable from the variables. In the operation of multiple
linear regression, we make variance covariance matrix (X”X). In this process we can
check correlation among explanatory variances. If is not enough, we can make
correlation matrix from variance and covariance matrix. The author recommends
checking of correlation matrix among explanatory variables before multiple linear
regression. Another approach is doing principle component analysis (PCA) among
explanatory variables before multiple linear regression. We can check multicollinearity
among variables, and we can use principle component score as synthesis variable in some
cases. Mathematically this method is strong, However, we cannot understand scientific
meaning of the principle component (in another word, we cannot give a name to the
component) in many cases when the meaning of the component is abstract. The other
merit of PCA is that we can find latent factors by PCA in some case.

When we collect record of 100-meter sprint and physical measurement of runners (body
height, body weight, sitting height, bust measurement and age) from all ages. When we
want to know relation between sprint speed and physical characteristics, multiple linear
regression is a useful method. However, all data of physical measurement has
multicollinearity, because all physical measurement is strongly related to body size. We
cannot get any useful information from multiple linear regression directly using row data
other than that sprint speed has strongly related with body size. We can expect to find
latent component by PCA. Because, we can easily suppose body size will be the first
principle component and other components are orthogonal (Independent) to body size.

We can estimate factors practically relating component from eigenvalues. Using



knowledge and experiences in the field, we consider the meaning of following components.
It may be obesity, relative length of legs, mass of muscle and so on. Then we make

synthesis functions such as followings

. . body weigt
Body mass index: BM] = ———
y (body height)3

) . 1 _ sitting heigh
Relative length of legs: 1 body heig

Bust measurement
BMI

Making two-dimensional scatter graphs of PCA, we can consider useful synthesis

Relative muscle ratio:

variable. Then we implement multiple linear regression using synthesis variable and

body height as the representative variable of body size.

When number of variables are small, it is not recommendable to use computerized
selection system of variables in automatic manner. The author has experience to read a
draft of master thesis concerning modeling of relation between evaluated taste of cheese
by organoleptic test and physical nature of cheese using multiple linear regression and
stepwise selection method of variables. She concluded that most important physical
nature is hardness of cheese. The author evaluates her conclusion is not correct or
insufficient, because hardness and amount of amino acids in the cheese are result of
aging. We should conclude that people joined in organoleptic test could detect difference
in amount or combination of amino acids.

Implication of this episode is risk of automatous use of multiple linear regression and
risk of blind acceptance of computerized system. We have to interpret the result of
multivariable liner regression by our knowledge and experiences and evaluate

applicability of selected variables in various aspects by ourselves.



