VI-71-3. Discriminant analysis.

We judge everything using information obtained in previous experiences in our daily life. We
predict the weather tomorrow from today’s temperature, air pressure, moisture, wind and so
on comparing to previous data of one day before fine day or rainy day. We unconsciously have
a threshold of a score compiling data of temperature, air pressure, moisture wind and so on.
This a kind of discriminant analysis. We are discriminating todays data to one day before
find day or on day before not fine day. Discriminant analysis is operation to make score for
judgement for discrimination using previous data which we know the final event. Simplest
discriminant analysis is linear discriminant analysis. In linear discriminant analysis, the
discrimination score is made as linear combination of variables. It hypothesizes equality of
variances between subpopulation such as one day before fine day and one day before not fine
day among variables. Quadratic determinant analysis is expansion of linear discriminant
analysis removing hypothesis of equality of variance among variables. Mixture discriminant
analysis is computerized discriminant analysis using EM algorithm. It used sum of weighted
probability of subpopulation as mixed normal distribution. Here, the author explains linear

discriminant analysis and quadratic determinant analysis.

VI-1-3-2. Nature of discrimination score.
There is a set of previous data obtained from target population which include subpopulations
1, 2,---,k,---,m. We want to estimate subpopulation in which new sample belongs from
variables of the sample. For this purpose, we make discrimination score as an index for
judgement of subpopulation in which the sample belongs. Most simple method to make score
is linear combination of variables.
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Space geometrically, following equation is formula of hyperplane include origin of coordinate.
ayx1 +axx; + -+ apx, =0
Denoting a data as d;

k = subpopulation number (1, -, m)



i: sample number in the group, (1, -+, ny)
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From the relation of plane and point

Z,; 1is distance between the point and the hyperplane which includes origin of coordinate. In

another word, Z;is projection of the point to the normal line of the hyperplane. (See figure
67).
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Fig.67 relation between discrimination score and normal line of hyperplane
The projections of data points distribute on the normal line in the same variance. This is the

model of the linear discriminant analysis.

Fig.68 Distribution of Z (discrimination score) on the normal line.



VI-1-3-3. Analysis of variance of discrimination score.

There are various solutions in linear discriminant analysis, when we consider differences in

detail. However, they can be categorized to two main approaches. One is analysis of variance

of discrimination score. The other is linear algebraic procedure. Here, the author introduces

method of ANOVA at first, and then introduces linear algebraic approach.

Actual data is as follow
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Total average: d
Average of subpopulation: 4, (=1 - m)
For simplification, we trans form all the data as distance from total average
Xij = dyij — E;

Transformed data set is as follow
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Here, we are assuming equality of variances among groups. What we are requested is to fined



optimum line to project data which emphasizes differences among averages in each
subpopulation. This is maximization of F ratio variance among averages of subpopulation
and variance in each subpopulation.
We consider average of all data and average of each group to make deviation of each data.
From
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Total average is

Averages in each subpopulation are
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Then we separate data to two parts. One is average of each subpopulation and the other is
difference from average of each subpopulation.
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We calculate Sum of square
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Sum of square of differences from average ¥.*, e;;? is sum of square in subpopulation. So,

we can express that as SS),.
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function of A. So, we denote as follow
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Firstly, we consider sum of square of subpopulations.
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From this, we can understand that (Xrt, (g’ + pyy™)) is variance covariance matrix.

We denote the variance covariance matrix as follow.
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This is variance covariance matrix, and we dente the variance and covariance matrix as V.
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We solve maximization of f(A) by partial differential equation.
5 _ ATMA
df (A) _
dA

Formula 75
We can separate variances depending of source of fluctuation, and we can get A as solution of
simultaneous equation of the partial differential equation. A is a normal vector expressing
gradient of a hyperplane. When we put coordinate of a data in the x of following equation.
obtainable scalar means the distance (d) from origin of coordinate to the hyperplane which
include point of x. This is discriminant score, which is distance from the reference hyperplane,
which include coordinate origin.

d = ATx = DS (discriminant score)

Then, we should determine threshold of DS. However, there is no general theory for
determination of the threshold, because preferable risk rate is different among issues
depending on the judgment of analysts. In some case such as toxicity of chemicals, we have to
judge in safety side nearly 0 risk. In another case such as betting of horse race, we need to be

challenging to accept risks to lose money. One of neutral setting up of threshold is to select



hyperplane which include midpoint of centers of two subpopulation.

threshold between subpopulation A and B(p(4) = p(B)) = da Z da =AT (xA ; xB)
In linear discriminant analysis, we hypothesize homoscedasticity among subpopulation. This
means data distribution of subpopulation is the same shape and size. Thus, we can make the
risk of miss-judgement when we select A and when we select B the same by this selection.

We could understand theory of discriminant analysis. However, operation of differential is
often troublesome work particularly when f(4) is complicated. We need to consider more

simple operation. More essentially, we can understand discriminant analysis space

geometrically through creation of simple and quick operation of discriminant analysis.

Exercise
We have dataset composed from 8 data. Among them, 4 data are belonging to subpopulation
1, and the others are belonging to subpopulation 2. Each data has 2 variables. We will produce

discrimination score for identification of subpopulation of new data.

Dataset
data

subpopulation sample No dq d,
1 1 5 8
1 2 7 4
1 3 8 5
1 4 8 7
2 1 5 5
2 2 7 2
2 3 4 3
2 4 4 6

Total average
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8 8

i- (9

d, =

5

Average of subpopulationl



— 54+47+8+8 28
d11=—:—_

4 4
T _BF4+5+7 24
2o 4 T4
- _ (7
dl_(e)
Average of subpopulation2
T _5+7+444_ 20
2 4 T4
T _5+2+3+6 _16_

22=—4 4

H

Deviation of each data from total average

_ (dkil) _ (6) _ <dki1 - 6)
dkiz 5 dyi —5

Deviation of average of subpopulation from total average.

ll

Xpi = dyi —

N
das == (o) - (3) = (3)
472786/ \4 2
Variance and covariance matrix of deviation of center of subpopulation from total average

-0 G D=6 2

Variance and covariance matrix of deviation from center of subpopulation



-2 2
0 -2
1 -1
(-2 0 1 1 0 2 -1 -1 1
V_(z -2 -1 11 -2 -1 2) 1|

—4+0—1+1+0—4+1—2)=(12 —9)
-9 20

4+0+1+1+0+4+1+1
4+4+1+1+1+4+1+4

=(—4+0—1+1+0—4+1—2

12 -9
V = SSressiqual = (_9 20)

. L. ATMA
We consider maximization of (A"ma)
(aTva)

g(A) = ATMA = At (g ;)A =24t (} 1),4

=2(01 ay) (1 D (Z;) =2(a; +a; a;+ay) (Z;) =2(a;? + 2a,a, + ay?)

h(A) = ATFA = A" (f} ;3) A

=@ @) (50 (0)

— (12a; —9a, —9a; + 20a,) (2)

= 12a12 - 9a1a2 - 9a1a2 + 20a22
= 12a12 - 18a1a2 + 20a22
= 2(6a12 - 9a1a2 + 10a22)

2(a® +2a10; +a;?)  ay +2a4a; +ay”

fa) = 2(6a;2 = 9a,a; + 10a,2)  6a,% — 9a,a, + 10a,?
(@) @ dn(a,)
o () Haha - gla) T
day - da, B h(a,)?

9(a)) = a,* + 2a,a, + ay?

h(al) = 6a12 - 9a1a2 + 10a22

dg(a,)
aall = 2a1 + 2a2

dh(a,)
6a11 =12a, — 9a,
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Conclusively, following A gives maximum value of f(A4).

a,? + 2a,a, + a,?
6a12 - 9a1a2 + 10a22

-

A is the normal vector of the reference hyperplane. When we sellect parallel hyperplane to

f(A) =

the reference hyperplane which includes midpoint of center of subpopulation 1 and

subpopulation 2.

DS threshold = (32)%((2) + (i)) =29 21) (S) — 29 %6421 x5 = 289
VI-71-3-4. Linear algebraic procedure.

Method of Lagrange multipliers is a method to find extreme value and condition of extreme
value in constrained conditions. The method is often used in maximization or minimization
of function. Principle of the method is osculation two hyper-solid locus. This means osculation
of two curved surface or curved surface with flat surface. In any case, two surfaces share a

tangent flat and normal line. One locus is the function to maximize or minimize and the



other locus is constrained condition. The locus of constrained condition is fixed, and we
expand the function to maximize or maximize. When two locues contact each other at first in
the process of the expansion, the value of the function to minimize is minimum value when
the center of the target function exists in the area of locus of function of constrained condition.
the target function reaches maximum value a t the last point of contact of two locus (See V-
2-6. Maximum and minimum, Method of Lagrange multipliers.).

Linear algebraic procedure in this paragraph uses similar approach, though the locus of target
function is not expanded but rotated in same size. Constrained condition is hyperplane, but

not fixed. It moves in a restriction.

Fig.69 Rotation of ellipse and its projection to a vector

Figure 69 illustrates relation between the gradient of ellipse and the length of the mapping on
the vector across the origin of the coordinate. It is obvious that the length of the projection is
shortest when the vector of minimum radius is parallel to the vector for mapping. When there
are two subpopulations, the vector for mapping is on the line connected center of two
subpopulations. The ratio of length of mapped shadow and the distance of center of two
subpopulation is minimum when the ellipse is rotated to fit the vector of minimum radius to

the vector connecting center of two subpopulations.



Here, we remember Cauchy-Schwarz inequation explained in V-2-6-2.
(ata)(b'b) > (ath)?
We modified this basic inequation as follow.
a= B%a
b=B
(B is symmetric)

((8%) (s)) () (20)) ((B%Ta)T <Bfﬁ)>
( '8} Bra )(ﬁfB : B 2B> (afB% B'%;;)

(aTB%B%a> (BTB‘%B‘%;;) > (aTB%B-%ﬁ)Z

(a"Ba)(a’B~'a) = (a” B)?

2

Condition of equality

a=cb
This means that (a”’Ba)(a’B~'a) is minimum value (a’B)?, when the vector a and b
exist on same direction including inverse direction.

We modify the inequation furthermore.

1 1
B2a = cB3B
a=cB'p
We divide both side by (a”Ba)
T 2
(leljt)x <a'B'a
(~ a’Ba > 0)
aTBa o
(“Tﬁ)z Ba
TR
( % >0, a’B'a>0, )
(a’Ba) o
@p@p =T
(aTBa)
i BfTa a’B la
(-a"B=p"a)

Denoting, a =A, =g, B=U

A is normal vector of reference hyperplane. g is vector connecting centers of two



1
subpopulation. Bz is symmetric matrix for rotation of the reference hyper vector.

ATUA > ATU-14

ATggT™A ™~
Condition of equality is obvious, because ATg and gTA are both inner product of vectors A
and g, the inner product is maximum when the vectors are on same direction. We do not

need to perform following calculation.

a=cB'p
A=cUlg
UA=cg
Conclusion
_ ATva . .. Trr—1 I
h(A) = - reaches its minimum value A"U~'4 when A = cU™!g.
A'gg'A

In other words, when vector UA is parallel to vector g, h(A) is minimum.

For application this to discrimination analysis, we need to allocate actual data to g and U
We can use unit vector on the right line between centers of two subpopulation in the case
there are only two subpopulations. For U, one possible idea is to use V as U, because we
want to minimize the ratio of variance of residuals to variance among average of

subpopulations.
m Nk

V=" Gt — 50 Gt — BT

k=1i=1
However, in this case, we do not need to calculate deviation of each data from center of

subpopulation because there only two factor composing total variances. One is differences
among subpopulation. The other is residual.

SStotal = SSresidual +SSsubpopulation
When we divide both side by SSq,ppoputation

SStotal SSresidual
= +1
SSsubpopulation SSsubpopulation
. SS . P SSresi . P
From this we can understand that when total 1S minimum, residud g minimum.
subpopulation Ssubpopulation

This means that we can use total variance and covariance matrix instead of V=SS, .qiquai-

This is the explanation of liner discrimination analysis by rotation of hyper ellipse.

Exercise

We implement discriminant analysis of example dataset in previous paragraph.
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Total average

data

QU
iy

QU
N)

= ks 3 01 0 00 N O
N W N U1 Ol W

_5H7+8+845+7+4+44 48
= - =5 =

_8+4+5+7+5+2+3+6 40

5
8 8

__ 5+7+8+8 28

d11=f T=7
— 5474444 20
dlz:fzzzs

8444547 24

n= g =g
- 5+2+4+3+6 16
I
= (3)
@ = (,)

Vector connecting centers of subpopulations.

g9=c(@-d)=c(})

We calculate deviation from total average.
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U=uu’ = (E(i ;81)
1
= 5(218 20)
A=cUlg

A= C$(218 210) (1) = C%(;?)

We select ¢ =559

=)

This is conclusion. We confirmed that we can obtain same result by operation by ANOVA
and linear algebraic procedure. Advantage of linear algebraic procedure is simplicity of
operation process. We do not need separation of variances and differential. One of the
weakness of the linear algebraic procedure is difficulty of understanding of theoretical
explanation particularly for readers who are unfamiliar with linear algebra. However, the
theory itself is rather simple and not difficult. The author recommends reading of V-2-6.
Maximum and minimum, Method of Lagrange multipliers for getting background knowledge.
Theoretical weakness of linear algebraic procedure is selection of g. In the case when there
are only two subpopulations vector g is on the straight line connecting two centers. This is
because, the distance on the line is expressed the difference between the two populations.
When there are more than three subpopulations, we should consider how to draw the line, On
of the method is to draw the multiple regression line among center of subpopulation. However,
in the case when number of variables are more than number of subpopulation, we cannot
estimate the multiple regression line. In the first place, the author does not know there exist
such case in reality. When there exist many variables, the relation between variables are
complex and we should not select linear discrimination analysis for prediction of
subpopulation. There are many other methods to categorize data such as principle component
analysis (PCA), factor analysis (FA), multidimensional scaling method (MDS). cluster
analysis and so on. The merit of liner discriminant analysis is flexibility of threshold. We can
put our policy and philosophy in the selection of threshold, because discriminant score is

simple length from reference hyperplane.



VI-1-3-5. Threshold of discrimination score

We can understand how to get optimal gradient of hyperplane. As an example, the author
draws a line of threshold to include the point of total mean in Figure 70, this is because the
author has no information of distribution of each subpopulation. The author hypothesizes
homoscedasticity between two subpopulations from visual information from the scatter
graph of the data. The author has no confidence for his judgement. However, the threshold
line of discrimination score Z separate data to correct subpopulation as sown in figure 70.
The value of the threshold is obtained by putting center of total distribution d; = 6,d, =5
in formula of discrimination score. All the data are completely separated to correct sub

population as following figure.

Fig. 70. Separation by threshold line of discrimination score Z = 29d, + 21d, = 279

Red circle: subpopulationl, blue circle: subpopulation2. Bleu line. Threshold line.

Data
subpopulation dy, dy Z Z — threshold(279)
1 5 8 313 34
1 7 4 287 8
1 8 5 337 58
1 8 7 379 100
2 5 5 250 -29
2 7 2 245 -34
2 4 3 179 -100
2 4 6 242 -37



VI-71-3-6. Additional discussion for application of discriminant analysis.

When we hypothesize normal distribution in each subpopulation, we can estimate probability
of error by the judgement by normalized distance by standard deviation from the center of
subpopulation. In upper case, the threshold exists at same distance from each center of
subpopulation. The probability of error is the same in both subpopulations. We need not to
make the probability the same. In many cases meaning of error judgement of A for correct B
and error judgement of B for correct A is different. As an example, in simple rapid test of
disease, the purpose of the test is to find out infected individuals. The seriousness of
diagnostic error that judges true infected individual as healthy individual should be strictly
avoided. For this, we need to accept error that judges healthy individual as infected individual.
In that case, we should set the threshold to minimize the possibility of misjudgement that
diagnose infected individual as healthy individuals. We set the threshold line closer to center

of subpopulation of healthy individuals as shown in figure 71.

threshold

healthy ‘infected

Fig. 71. Configuration of threshold of discrimination score.

We understand that we can implement discriminant analysis without knowledge ANOVA and
calculation of differential. This is same as multiple linear regression analysis. In discriminant
analysis, we need to optimize number of variables, because we can simplify the operation in
case of diagnosis. This is also important in other applications. Too much variables are
inefficient and makes confusion. This is also same as multiple linear regression. In the
explanation of this text, the author presumes equal variances among subpopulation. This is
sometimes unnatural. On the other side, he does not presume equal variances among variables.

However, in several case, we need normalization of data by dividing raw data by standard



deviation of each variables to make equality of variance among variables as in multiple linear
regression. However, when we normalize the data, liner discriminant analysis became no
meaning, because data distribution forms hyper sphere. When we emphasize orthogonality of
variables, discriminant analysis using principle component scores may be a possible approach.
However, it may make unnecessary confusion relating to the meaning of components, and it
may be inefficient. There are many discussions relating to discrimination analyses. We should

select proper method considering purpose of analysis and nature of data.



