
VI-1-3. Discriminant analysis. 

 

We judge everything using information obtained in previous experiences in our daily life. We 

predict the weather tomorrow from today’s temperature, air pressure, moisture, wind and so 

on comparing to previous data of one day before fine day or rainy day. We unconsciously have 

a threshold of a score compiling data of temperature, air pressure, moisture wind and so on. 

This a kind of discriminant analysis.  We are discriminating todays data to one day before 

find day or on day before not fine day. Discriminant analysis is operation to make score for 

judgement for discrimination using previous data which we know the final event.  Simplest 

discriminant analysis is linear discriminant analysis. In linear discriminant analysis, the 

discrimination score is made as linear combination of variables.  It hypothesizes equality of 

variances between subpopulation such as one day before fine day and one day before not fine 

day among variables. Quadratic determinant analysis is expansion of linear discriminant 

analysis removing hypothesis of equality of variance among variables. Mixture discriminant 

analysis is computerized discriminant analysis using EM algorithm. It used sum of weighted 

probability of subpopulation as mixed normal distribution.  Here, the author explains linear 

discriminant analysis and quadratic determinant analysis. 

 

VI-1-3-2. Nature of discrimination score.  

There is a set of previous data obtained from target population which include subpopulations 

1, 2,⋯ , 𝑘, ⋯ , 𝑚 . We want to estimate subpopulation in which new sample belongs from 

variables of the sample. For this purpose, we make discrimination score as an index for 

judgement of subpopulation in which the sample belongs. Most simple method to make score 

is linear combination of variables.  

𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥 = 𝑧 
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Space geometrically, following equation is formula of hyperplane include origin of coordinate.  

𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥 = 0 

Denoting a data as 𝑑 

𝑘 = subpopulation number (1, ⋯ , m) 



𝑖: sample number in the group, (1, ⋯ , 𝑛) 

𝑑 = ൭

𝑥ଵ

⋮
𝑥
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From the relation of plane and point  

𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥ଵ = 𝑍 

𝑍 is distance between the point and the hyperplane which includes origin of coordinate. In 

another word, 𝑍is projection of the point to the normal line of the hyperplane. (See figure 

67).  

     
   Fig.67 relation between discrimination score and normal line of hyperplane 

The projections of data points distribute on the normal line in the same variance. This is the 

model of the linear discriminant analysis. 

 

             

Fig.68 Distribution of Z (discrimination score) on the normal line.  

 



VI-1-3-3. Analysis of variance of discrimination score.  

There are various solutions in linear discriminant analysis, when we consider differences in 

detail. However, they can be categorized to two main approaches. One is analysis of variance 

of discrimination score. The other is linear algebraic procedure. Here, the author introduces 

method of ANOVA at first, and then introduces linear algebraic approach.  

   

Actual data is as follow  

Subpopulation   data number      data      variables     

                                               𝑖         ⋯      𝑝 

    1               1             𝒅𝟏𝟏   = (     𝑑ଵଵଵ              …      𝑑ଵଵ)𝑻 

    1               2             𝒅𝟏𝟐   = (     𝑑ଵଶଵ              …      𝑑ଵଶ)𝑻 

    ⋮                                    ⋮                                ⋮                         ⋮                       ⋱            ⋮ 

1               𝑛ଵ            𝒅𝟏𝒏𝟏
   = (    𝑑ଵభଵ            …      𝑑ଵభ)𝑻 

Sum subp 1                    ∑ 𝒅𝟏𝒊
𝒏𝟏
ୀଵ   =൫∑ 𝑑ଵଵ

𝒏𝟏
ୀଵ          ⋯    ∑ 𝑑ଵ

𝒏𝟏
ୀଵ ൯

்
 

Average subp1                   𝒅𝟏
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∑ ௗభభ
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തതതതത൰
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2               1               𝒅𝟐𝟏   = (     𝑑ଶଵଵ              …      𝑑ଶଵ)𝑻 

    2               2              𝒅𝟐𝟐   = (     𝑑ଶଶଵ              …      𝑑ଶଶ)𝑻 

    ⋮                                    ⋮                                ⋮                         ⋮                       ⋱            ⋮ 

2                𝑛ଶ            𝒅𝟐𝒏𝟏
   = (    𝑑ଶభଵ            …      𝑑ଶభ)𝑻 

Sum subp 2                    ∑ 𝒅𝟐𝒊
𝒏𝟐
ୀଵ   =൫∑ 𝑑ଶଵ

𝒏𝟐
ୀଵ          ⋯    ∑ 𝑑ଶ

𝒏𝟐
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்
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∑ ௗమభ
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⋮ 

 

m               1             𝒅𝒎𝟏   = (     𝑑ଵଵ              …      𝑑ଵ)𝑻 

    m               2             𝒅𝒎𝟐   = (     𝑑ଶଵ              …      𝑑ଶ)𝑻 

    ⋮                                    ⋮                                ⋮                         ⋮                       ⋱            ⋮ 

m                𝑛            𝒅𝒎𝒏𝒎
   = (    𝑑భଵ            …      𝑑భ)𝑻 

Sum subp m                    ∑ 𝒅𝟐𝒊
𝒏𝒎
ୀଵ   =൫∑ 𝑑ଵ

𝒏𝒎
ୀଵ          ⋯    ∑ 𝑑
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సభ
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Total sum      𝑁 = ∑ 𝑛
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Total average: 𝒅ന  

Average of subpopulation: 𝑑ప
ഥ ,    (𝑖 = 1, ⋯ 𝑚) 

For simplification, we trans form all the data as distance from total average 
𝑥 = 𝑑 − 𝑑ఫ

ഥ  

Transformed data set is as follow 

Subpopulation   data number      data      variables     

                                               𝑖         ⋯      𝑝 

    1               1             𝒙𝟏𝟏   = (     𝑥ଵଵଵ              …      𝑥ଵଵ)𝑻 

    1               2             𝒙𝟏𝟐   = (     𝑥ଵଶଵ              …      𝑥ଵଶ)𝑻 

    ⋮                                    ⋮                                ⋮                         ⋮                       ⋱            ⋮ 

1               𝑛ଵ            𝒙𝟏𝒏𝟏
   = (    𝑥ଵభଵ            …      𝑥ଵభ)𝑻 

Sum subp 1                    ∑ 𝒙𝟏𝒊
𝒏𝟏
ୀଵ   =൫∑ 𝑥ଵଵ

𝒏𝟏
ୀଵ          ⋯    ∑ 𝑥ଵ

𝒏𝟏
ୀଵ ൯

்
 

Average subp1                   𝒙𝟏തതത  =        ൬
∑ ௫భభ

𝒏𝟏
సభ

భ
= 𝑥ଵଵതതതത ⋯

∑ ௫భ
𝒏𝟏
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భ
= 𝑥ଵതതതത൰

்

 

 

2               1               𝒙𝟐𝟏   = (     𝑥ଶଵଵ              …      𝑥ଶଵ)𝑻 

    2               2              𝒙𝟐𝟐   = (     𝑥ଶଶଵ              …      𝑥ଶଶ)𝑻 

    ⋮                                    ⋮                                ⋮                         ⋮                       ⋱            ⋮ 

2                𝑛ଶ            𝒙𝟐𝒏𝟏
   = (    𝑥ଶభଵ            …      𝑥ଶభ)𝑻 

Sum subp 2                    ∑ 𝒙𝟐𝒊
𝒏𝟐
ୀଵ   =൫∑ 𝑥ଶଵ

𝒏𝟐
ୀଵ          ⋯    ∑ 𝑥ଶ

𝒏𝟐
ୀଵ ൯
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Average subp2                     𝒙𝟐തതത  =        ൬
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⋮ 

 

m               1             𝒙𝒎𝟏   = (     𝑥ଵଵ              …      𝑥ଵ)𝑻 

    m               2             𝒙𝒎𝟐   = (     𝑥ଶଵ              …      𝑥ଶ)𝑻 

    ⋮                                    ⋮                                ⋮                         ⋮                       ⋱            ⋮ 

m                𝑛            𝒙𝒎𝒏𝒎
   = (    𝑥భଵ            …      𝑥భ)𝑻 

Sum subp m                    ∑ 𝒙𝟐𝒊
𝒏𝒎
ୀଵ   =൫∑ 𝑥ଵ

𝒏𝒎
ୀଵ          ⋯    ∑ 𝑥

𝒏𝒎
ୀଵ ൯

்
 

Average subp m                   𝒙𝒎തതതത  =        ቀ
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Total sum      𝑁                    ∑ ∑ 𝒙𝒌𝒊
𝒏𝒌
ୀଵ


ୀଵ =         (    0                   ⋯          0)் 

Total average                                                  𝒙ന     =  (       0                  ⋯          0)் 

 

Here, we are assuming equality of variances among groups. What we are requested is to fined 



optimum line to project data which emphasizes differences among averages in each 

subpopulation.  This is maximization of F ratio variance among averages of subpopulation 

and variance in each subpopulation.   

We consider average of all data and average of each group to make deviation of each data. 

From 

𝑍 = 𝑨்𝒙𝒌𝒊 = ൫𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥൯ 

Total average is  

�̿� = 𝑨்𝒙ധ=0 

Averages in each subpopulation are 

𝑍
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Then we separate data to two parts. One is average of each subpopulation and the other is 

difference from average of each subpopulation.  
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We calculate Sum of square  
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𝑆𝑆௧௧ = 𝑆𝑆௦ௗ௨ + 𝑆𝑆௦௨௨௧ 

 



Sum of square of differences from average ∑ 𝑒
ଶೖ

ୀଵ  is sum of square in subpopulation. So, 

we can express that as 𝑆𝑆. 
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: 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓𝑓𝑟𝑒𝑒𝑑𝑜𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 
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𝑆𝑆௧௧ = 𝑆𝑆௦ௗ௨ + 𝑆𝑆௦௨௨௧ 
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Ratio of variance is 𝐹 

𝐹 =
σଶ

௦௨௨௧

σଶ
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=
𝑆𝑆௦௨௨௧
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ቆ
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𝑚 − 1
ቇ  is constant and has norelation with discriminationscore in this case  

We consider maximization of ቀ
ௌௌೞೠ್ೠೌ

ௌௌೝೞೠೌ
ቁ for maximization of F, and ቀ

ௌௌೞೠ್ೠೌ

ௌௌೝೞೠೌ
ቁ is 

function of 𝑨. So, we denote as follow 

𝑓(𝑨) = ൬
𝑆𝑆௦௨௨௧

𝑆𝑆௦ௗ௨
൰ 

Firstly, we consider sum of square of subpopulations.  
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For simplification we as follow 

𝜇 =
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𝑛
 𝑥
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⋮ ⋮
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⋮ ⋮
𝜇𝜇ଵ 𝜇𝜇ଶ
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= 𝑨் ൮
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⋮ ⋮
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⋱ ⋮
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൲ ൮

𝜇ଵଵ 𝜇ଵଶ

𝜇ଶଵ 𝜇ଶଶ

⋯ 𝜇ଵ

⋯ 𝜇ଶ

⋮ ⋮
𝜇ଵ 𝜇ଶ

⋱ ⋮
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൲  𝑨 

From this, we can understand that  (∑ (𝝁𝒌𝝁𝒌
𝑻 + 𝝁𝒍𝝁𝒍

𝑻)
ୀଵ ) is variance covariance matrix. 

We denote the variance covariance matrix as follow. 

𝑴 =  𝝁𝒌𝝁𝒌
𝑻



ୀଵ

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

 𝜇ଵ
ଶ



ୀଵ

 𝜇ଵ𝜇ଶ



ୀଵ

 𝜇ଶ𝜇ଵ



ୀଵ

 𝜇ଶ
ଶ



ୀଵ

⋯  𝜇ଵ𝜇ଶ



ୀଵ

⋯  𝜇ଶ𝜇



ୀଵ

⋮ ⋮

 𝜇𝜇ଵ



ୀଵ

 𝜇𝜇ଶ



ୀଵ

⋱ ⋮

⋯     𝜇
ଶ



ୀଵ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

𝑆𝑆௦௨௨௧ = (𝑍
തതത)ଶ



ୀଵ

= 𝑨𝑇𝑴𝑨 

Then we consider sum of square of residuals. 

𝑆𝑆 =  𝑒
ଶ

ೖ

ୀଵ

= ൫𝑨்(𝒙𝒌𝒊 − 𝒙തതത)൯൫𝑨்(𝒙𝒌𝒊 − 𝒙തതത)൯
்

ೖ

ୀଵ

=  𝑨்(𝒙𝒌𝒊 − 𝒙തതത)(𝒙𝒌𝒊 − 𝒙തതത)்𝑨

ೖ

ୀଵ

 

= 𝑨் ቌ(𝒙𝒌𝒊 − 𝒙തതത)(𝒙𝒌𝒊 − 𝒙തതത)்

ೖ

ୀଵ

ቍ 𝑨 

We denote as follow. 

𝒙𝒌𝒊 − 𝒙തതത =

⎝

⎜
⎜
⎜
⎛

𝑥ଵ −
1

𝑛
 𝑥

ೖ

ୀଵ

⋮

𝑥
−

1

𝑛
 𝑥

ೖ

ୀଵ ⎠

⎟
⎟
⎟
⎞

= ൭
𝜙

⋮
𝜙ଵ

൱ 



(𝒙𝒌𝒊 − 𝒙തതത)(𝒙𝒌𝒊 − 𝒙തതത)் = ൭

𝜙ଵ

⋮
𝜙

൱ (𝜙ଵ ⋯ 𝜙) =

⎝

⎜
⎛

𝜙ଵ
ଶ 𝜙ଵ𝜙ଶ

𝜙ଶ𝜙ଵ 𝜙ଶ
ଶ

⋯ 𝜙ଵ𝜙

⋯ 𝜙ଶ𝜙

⋮ ⋮
𝜙𝜙ଵ 𝜙𝜙ଶ

⋱ ⋮
⋯       𝜙


ଶ

⎠

⎟
⎞

 

 (𝒙𝒌𝒊 − 𝒙തതത)(𝒙𝒌𝒊 − 𝒙തതത)் 

ೖ

ୀଵ



ୀଵ

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

  𝜙ଵ
ଶ

ೖ

ୀଵ



ୀଵ

  𝜙ଵ𝜙ଶ

ೖ

ୀଵ



ୀଵ

  𝜙ଶ𝜙ଵ

ೖ

ୀଵ



ୀଵ

  𝜙ଶ
ଶ

ೖ

ୀଵ



ୀଵ

⋯   𝜙 𝜙

ೖ

ୀଵ



ୀଵ

⋯   𝜙ଶ𝜙

ೖ

ୀଵ



ୀଵ

⋮ ⋮

  𝜙𝜙ଵ

ೖ

ୀଵ



ୀଵ

  𝜙𝜙ଶ

ೖ

ୀଵ



ୀଵ

⋱ ⋮

⋯   𝜙
ଶ

ೖ

ୀଵ



ୀଵ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

This is variance covariance matrix, and we dente the variance and covariance matrix as 𝑽. 

𝑽 =  (𝒙𝒌𝒊 − 𝒙തതത)(𝒙𝒌𝒊 − 𝒙തതത)் 

ೖ

ୀଵ



ୀଵ

 

𝑆𝑆௦ௗ௨ =  𝑆𝑆



ୀଵ

= 𝑨்𝑽𝑨 

𝑓(𝑨) = ቆ
𝑆𝑆௦௨௨௧

∑ 𝑆𝑆

ୀଵ

ቇ =
𝑨்𝑴𝑨

𝑨்𝑽𝑨
 

We solve maximization of 𝑓(𝑨) by partial differential equation. 

𝑓(𝑨) =
𝑨்𝑴𝑨

𝑨்𝑭𝑨
 

𝑑𝑓(𝑨)

𝑑𝑨
= 0 

Formula 75 

We can separate variances depending of source of fluctuation, and we can get A as solution of 

simultaneous equation of the partial differential equation. A is a normal vector expressing 

gradient of a hyperplane. When we put coordinate of a data in the 𝒙 of following equation. 

obtainable scalar means the distance (𝑑) from origin of coordinate to the hyperplane which 

include point of 𝒙. This is discriminant score, which is distance from the reference hyperplane, 

which include coordinate origin. 

𝑑 = 𝑨𝑻𝒙 = DS (discriminant score) 

Then, we should determine threshold of DS. However, there is no general theory for 

determination of the threshold, because preferable risk rate is different among issues 

depending on the judgment of analysts. In some case such as toxicity of chemicals, we have to 

judge in safety side nearly 0 risk. In another case such as betting of horse race, we need to be 

challenging to accept risks to lose money. One of neutral setting up of threshold is to select 



hyperplane which include midpoint of centers of two subpopulation.  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐴 𝑎𝑛𝑑 𝐵(𝑝(𝐴) = 𝑝(𝐵)) =
𝑑 + 𝑑

2
= 𝑨𝑻 ൬

𝒙𝑨 + 𝒙𝑩

𝟐
൰ 

In linear discriminant analysis, we hypothesize homoscedasticity among subpopulation. This 

means data distribution of subpopulation is the same shape and size. Thus, we can make the 

risk of miss-judgement when we select A and when we select B the same by this selection.    

We could understand theory of discriminant analysis. However, operation of differential is 

often troublesome work particularly when 𝑓(𝑨) is complicated. We need to consider more 

simple operation. More essentially, we can understand discriminant analysis space 

geometrically through creation of simple and quick operation of discriminant analysis. 

 

Exercise 

We have dataset composed from 8 data. Among them, 4 data are belonging to subpopulation 

1, and the others are belonging to subpopulation 2. Each data has 2 variables. We will produce 

discrimination score for identification of subpopulation of new data.     

 

Dataset 

data 

subpopulation sample No   𝑑ଵ         𝑑ଶ            

 1         1       5          8           

 1             2             7          4          

1             3             8          5          

 1             4             8          7          

  2             1             5          5         

  2             2             7          2          

  2             3             4          3          

  2             4             4          6  

Total average 

𝑑ଵ
ധധധ =

5 + 7 + 8 + 8 + 5 + 7 + 4 + 4

8
=

48

8
= 6 

𝑑ଶ
ധധധ =

8 + 4 + 5 + 7 + 5 + 2 + 3 + 6

8
=

40

8
= 5 

𝒅ന = ቀ
6
5

ቁ 

Average of subpopulation1 



𝑑ଵଵ
തതതത =

5 + 7 + 8 + 8

4
=

28

4
= 7 

𝑑ଵଶ
തതതത =

8 + 4 + 5 + 7

4
=

24

4
= 6 

𝒅ଵ
തതത = ቀ

7
6

ቁ 

Average of subpopulation2 

 

𝑑ଶଵ
തതതതത =

5 + 7 + 4 + 4

4
=

20

4
= 5 

𝑑ଶଶ
തതതതത =

5 + 2 + 3 + 6

4
=

16

4
= 4 

𝑑ଶ
തതത = ቀ

5
4

ቁ 

Deviation of each data from total average 

𝒙𝒌𝒊 = 𝒅𝒌𝒊 − 𝒅ന = ൬
𝑑ଵ

𝑑ଶ
൰ − ቀ

6
5

ቁ = ൬
𝑑ଵ − 6
𝑑 − 5

൰ 

Deviation of average of subpopulation from total average. 

𝒅
തതതത − 𝒅ന = ቆ

𝑑ଵ
തതതതത

𝑑ଶ
തതതതത

ቇ − ቀ
6
5

ቁ 

𝒅𝒌𝒊 − 𝒅
തതതത = ൬

𝑑ଵ

𝑑
൰ − ቆ

𝑑ଵ
തതതതത

𝑑ଶ
തതതതത

ቇ 

𝒅ଵ
തതത − 𝒅ന = ቀ

7
6

ቁ − ቀ
6
5

ቁ = ቀ
1
1

ቁ , 𝒅ଶ
തതതത − 𝒅ന = ቀ

5
4

ቁ − ቀ
6
5

ቁ = ቀ
−1
−1

ቁ 

𝒅𝟏𝟏 − 𝒅ଵ
തതത = ቀ

5

8
ቁ − ቀ

7

6
ቁ = ቀ

−2

2
ቁ, 𝒅𝟏𝟐 − 𝒅ଵ

തതത = ቀ
7

4
ቁ − ቀ

7

6
ቁ = ቀ

0

−2
ቁ, 𝒅𝟏𝟑 − 𝒅ଵ

തതത = ቀ
8
5

ቁ − ቀ
7
6

ቁ = ቀ
1

−1
ቁ, =

𝒅𝟏𝟐 − 𝒅1
തതതത ቀ

8
7

ቁ − ቀ
7
6

ቁ = ቀ
1
1

ቁ 

𝒅𝟐𝟏 − 𝒅ଶ
തതതത = ቀ

5

5
ቁ − ቀ

5

4
ቁ = ቀ

0

1
ቁ 𝒅𝟐𝟐 − 𝒅ଶ

തതതത, = ቀ
7

2
ቁ − ቀ

5

4
ቁ = ቀ

2

−2
ቁ , 𝒅𝟐𝟑 − 𝒅ଶ

തതതത = ቀ
4

3
ቁ − ቀ

5

4
ቁ = ቀ

−1

−1
ቁ , 

𝒅𝟐𝟒 − 𝒅ଶ
തതതത = ቀ

4

6
ቁ − ቀ

5

4
ቁ = ቀ

−1

2
ቁ 

Variance and covariance matrix of deviation of center of subpopulation from total average 

𝑴 = ൫𝒅ଵ
തതത − 𝒅ന 𝒅ଶ

തതതത − 𝒅ന൯൫𝒅ଵ
തതത − 𝒅ന 𝒅ଶ

തതതത − 𝒅ന൯
𝑻
 

= ቀ
1 −1
1 −1

ቁ ቀ
1 1

−1 −1
ቁ = ቀ

2 2
2 2

ቁ 

Variance and covariance matrix of deviation from center of subpopulation  



𝑽 = ቀ
−2
2

0
−2

1
−1

1
1

0
1

2
−2

−1
−1

−1
2

ቁ

⎝

⎜
⎜
⎜
⎜
⎛

−2 2
0 −2
1 −1
1 1
0 1

2 −2
−1 −1
−1 2 ⎠

⎟
⎟
⎟
⎟
⎞

 

= ቀ
4 + 0 + 1 + 1 + 0 + 4 + 1 + 1 −4 + 0 − 1 + 1 + 0 − 4 + 1 − 2

−4 + 0 − 1 + 1 + 0 − 4 + 1 − 2 4 + 4 + 1 + 1 + 1 + 4 + 1 + 4
ቁ = ቀ

12 −9
−9 20

ቁ 

𝑽 = 𝑆𝑆௦௦ௗ௨ = ቀ
12 −9
−9 20

ቁ 

We consider maximization of ൫𝑨𝑴𝑨൯

(𝑨𝑽𝑨)
  

𝑔(𝑨) = 𝑨்𝑴𝑨 = 𝑨௧ ቀ
2 2
2 2

ቁ 𝑨 = 2𝑨௧ ቀ
1 1
1 1

ቁ 𝑨 

= 2(𝑎ଵ 𝑎ଶ) ቀ
1 1
1 1

ቁ ቀ
𝑎ଵ

𝑎ଶ
ቁ = 2(𝑎ଵ + 𝑎ଶ 𝑎ଵ + 𝑎ଶ) ቀ

𝑎ଵ

𝑎ଶ
ቁ = 2(𝑎ଵ

ଶ + 2𝑎ଵ𝑎ଶ + 𝑎ଶ
ଶ) 

ℎ(𝑨) = 𝑨்𝑭𝑨 = 𝑨் ቀ
12 −9

−9 20
ቁ 𝑨 

= (𝑎ଵ 𝑎ଶ) ቀ
12 −9

−9 20
ቁ ቀ

𝑎ଵ

𝑎ଶ
ቁ 

= (12𝑎ଵ − 9𝑎ଶ −9𝑎ଵ + 20𝑎ଶ) ቀ
𝑎ଵ

𝑎ଶ
ቁ 

= 12𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ − 9𝑎ଵ𝑎ଶ + 20𝑎ଶ

ଶ 

= 12𝑎ଵ
ଶ − 18𝑎ଵ𝑎ଶ + 20𝑎ଶ

ଶ 

= 2(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ) 

𝑓(𝑨) =
2(𝑎ଵ

ଶ + 2𝑎ଵ𝑎ଶ + 𝑎ଶ
ଶ)

2(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)
=

𝑎ଵ
ଶ + 2𝑎ଵ𝑎ଶ + 𝑎ଶ

ଶ

6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ
 

𝜕𝑓(𝑨)

𝜕𝑎ଵ
=

𝜕 ൬
𝑔(𝑎ଵ)
ℎ(𝑎ଵ)

൰

𝜕𝑎ଵ
=

𝜕𝑔(𝑎ଵ)
𝜕𝑎ଵ

ℎ(𝑎ଵ) − 𝑔(𝑎ଵ)
𝜕ℎ(𝑎ଵ)

𝜕𝑎ଵ

ℎ(𝑎ଵ)ଶ
 

𝑔(𝑎ଵ) = 𝑎ଵ
ଶ + 2𝑎ଵ𝑎ଶ + 𝑎ଶ

ଶ 

ℎ(𝑎ଵ) = 6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ 

𝜕𝑔(𝑎ଵ)

𝜕𝑎ଵ
= 2𝑎ଵ + 2𝑎ଶ 

𝜕ℎ(𝑎ଵ)

𝜕𝑎ଵ
= 12𝑎ଵ − 9𝑎ଶ 



𝜕𝑓(𝑨)

𝜕𝑎ଵ
=

(2𝑎ଵ + 2𝑎ଶ)(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ) − (𝑎ଵ
ଶ + 2𝑎ଵ𝑎ଶ + 𝑎ଶ

ଶ)(12𝑎ଵ − 9𝑎ଶ)

(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)ଶ
 

=
(12𝑎ଵ

ଷ − 18𝑎ଵ
ଶ𝑎ଶ + 20𝑎ଵ𝑎ଶ

ଶ + 12𝑎ଵ
ଶ𝑎ଶ − 18𝑎ଵ𝑎ଶ

ଶ + 20𝑎ଶ
ଷ) − (12𝑎ଵ

ଷ + 24𝑎ଵ
ଶ𝑎ଶ + 12𝑎ଵ𝑎ଶ

ଶ − 9𝑎ଵ
ଶ𝑎 − 18𝑎ଵ𝑎ଶ

ଶ − 9𝑎ଶ
ଷ)

ቀ6𝑎1
2 − 9𝑎1𝑎2 + 10𝑎2

2ቁ
ଶ  

=
(12𝑎ଵ

ଷ − 6𝑎ଵ
ଶ𝑎ଶ + 2𝑎ଵ𝑎ଶ

ଶ + 20𝑎ଶ
ଷ) − (12𝑎ଵ

ଷ + 15𝑎ଵ
ଶ𝑎ଶ − 6𝑎ଵ𝑎ଶ

ଶ − 9𝑎ଶ
ଷ)

(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)ଶ
 

=
−21𝑎ଵ

ଶ𝑎ଶ + 8𝑎ଵ𝑎ଶ
ଶ + 29𝑎ଶ

ଷ

(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)ଶ
 

𝜕

𝜕𝑎ଶ
𝑓(𝑨) =

𝜕 ൬
𝑔(𝑎ଶ)
ℎ(𝑎ଶ)

൰

𝜕𝑎ଵ
=

𝜕𝑔(𝑎ଶ)
𝜕𝑎ଶ

ℎ(𝑎ଶ) − 𝑔(𝑎ଶ)
𝜕ℎ(𝑎ଶ)

𝜕𝑎ଶ

ℎ(𝑎ଵ)ଶ
 

𝜕𝑔(𝑎ଶ)

𝜕𝑎ଶ
= 2𝑎ଵ + 2𝑎ଶ 

𝜕ℎ(𝑎ଶ)

𝜕𝑎ଶ
= −9𝑎ଵ + 20𝑎ଶ 

𝜕𝑓(𝑨)

𝜕𝑎ଶ
=

(2𝑎ଵ + 2𝑎ଶ)(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ) − (𝑎ଵ
ଶ + 2𝑎ଵ𝑎ଶ + 𝑎ଶ

ଶ)(−9𝑎ଵ + 20𝑎ଶ)

(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)ଶ
 

=
(12𝑎ଵ

ଷ − 18𝑎ଵ
ଶ𝑎ଶ + 20𝑎ଵ𝑎ଶ

ଶ + 12𝑎ଵ
ଶ𝑎ଶ − 18𝑎ଵ𝑎ଶ

ଶ + 20𝑎ଶ
ଷ) − (−9𝑎ଵ

ଷ − 18𝑎ଵ
ଶ𝑎ଶ − 9𝑎ଵ𝑎ଶ

ଶ + 20𝑎ଵ
ଶ𝑎ଶ + 40𝑎ଵ𝑎ଶ

ଶ + 20𝑎ଶ
ଶ)

(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)ଶ
 

=
(12𝑎ଵ

ଷ − 6𝑎ଵ
ଶ𝑎ଶ + 2𝑎ଵ𝑎ଶ

ଶ + 20𝑎ଶ
ଷ) − (−9𝑎ଵ

ଷ + 2𝑎ଵ
ଶ𝑎ଶ + 31𝑎ଵ𝑎ଶ

ଶ + 20𝑎ଶ
ଶ)

(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)ଶ
 

=
21𝑎ଵ

ଷ − 8𝑎ଵ
ଶ𝑎ଶ − 29𝑎ଵ𝑎ଶ

ଶ

(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)ଶ
 

Condition of extreme value 

𝜕𝑓(𝑨)

𝜕𝑎ଵ
=

𝜕𝑓(𝑨)

𝜕𝑎ଶ
= 0 

(6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ)ଶ > 0 

 

We solve following simultaneous equation 

−21𝑎ଵ
ଶ𝑎ଶ + 8𝑎ଵ𝑎ଶ

ଶ + 29𝑎ଶ
ଷ = 0 

21𝑎ଵ
ଷ − 8𝑎ଵ

ଶ𝑎ଶ − 29𝑎ଵ𝑎ଶ
ଶ = 0 

𝑎ଵ ≠ 0 

Divide both sides by 𝑎ଵ
ଷ 

21 − 8
𝑎ଶ

𝑎ଵ
− 29 ൬

𝑎ଶ

𝑎ଵ
൰

ଶ

= 0 



𝑎ଶ

𝑎ଵ
= 𝑡 

−21𝑡 + 8𝑡ଶ + 29𝑡ଷ = 0 

21 − 8𝑡 − 29𝑡ଶ = 0 

 

29𝑡ଶ + 8𝑡 − 21 = 0 

(29𝑡 − 21)(𝑡 + 1) = 0 

𝑡 =
21

29
 , 𝑡 = −1  

From 𝑡 =
ଶଵ

ଶଽ
, 𝑎ଵ = 29, 𝑎ଶ = 21 

From   𝑡 = −1 , 𝑎ଵ = 1, 𝑎ଶ = −1  

𝑓(𝑨) =
𝑎ଵ

ଶ + 2𝑎ଵ𝑎ଶ + 𝑎ଶ
ଶ

6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ
 

𝑓(𝑡) =
1 + 2𝑡 + 𝑡ଶ

6 − 9𝑡 + 10𝑡ଶ
=

1
𝑡ଶ + 2

1
𝑡

+ 1

6
1
𝑡ଶ − 9

1
𝑡

+ 10
 

   ｔ   −∞         -1         ଶଵ

ଶଽ
         −∞ 

   డ

డ௧
              −    0    +    0    − 

   𝑉       0.1          0    0.6289   0.1  

Conclusively, following 𝑨 gives maximum value of 𝑓(𝑨). 

𝑓(𝑨) =
𝑎ଵ

ଶ + 2𝑎ଵ𝑎ଶ + 𝑎ଶ
ଶ

6𝑎ଵ
ଶ − 9𝑎ଵ𝑎ଶ + 10𝑎ଶ

ଶ
 

𝑨 = ቀ
𝑎ଵ

𝑎ଶ
ቁ = ቀ

29
21

ቁ 

𝑨 is the normal vector of the reference hyperplane. When we sellect parallel hyperplane to 

the reference hyperplane which includes midpoint of center of subpopulation 1 and 

subpopulation 2. 

DS 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = ቀ
29
21

ቁ
் 1

2
ቆቀ

7
6

ቁ + ቀ
5
4

ቁቇ = (29 21) ቀ
6
5

ቁ = 29 × 6 + 21 × 5 = 289 

 

VI-1-3-4. Linear algebraic procedure. 

Method of Lagrange multipliers is a method to find extreme value and condition of extreme 

value in constrained conditions. The method is often used in maximization or minimization 

of function. Principle of the method is osculation two hyper-solid locus. This means osculation 

of two curved surface or curved surface with flat surface. In any case, two surfaces share a 

tangent flat and normal line.  One locus is the function to maximize or minimize and the 



other locus is constrained condition. The locus of constrained condition is fixed, and we 

expand the function to maximize or maximize. When two locues contact each other at first in 

the process of the expansion, the value of the function to minimize is minimum value when 

the center of the target function exists in the area of locus of function of constrained condition. 

the target function reaches maximum value a t the last point of contact of two locus (See V-

2-6. Maximum and minimum, Method of Lagrange multipliers.). 

Linear algebraic procedure in this paragraph uses similar approach, though the locus of target 

function is not expanded but rotated in same size. Constrained condition is hyperplane, but 

not fixed. It moves in a restriction.  

 

         

Fig.69 Rotation of ellipse and its projection to a vector  

 

Figure 69 illustrates relation between the gradient of ellipse and the length of the mapping on 

the vector across the origin of the coordinate. It is obvious that the length of the projection is 

shortest when the vector of minimum radius is parallel to the vector for mapping. When there 

are two subpopulations, the vector for mapping is on the line connected center of two 

subpopulations. The ratio of length of mapped shadow and the distance of center of two 

subpopulation is minimum when the ellipse is rotated to fit the vector of minimum radius to 

the vector connecting center of two subpopulations.  



Here, we remember Cauchy-Schwarz inequation explained in V-2-6-2.    

(𝒂𝒕𝒂)(𝒃௧𝒃) ≥ (𝒂௧𝒃)𝟐 

We modified this basic inequation as follow. 

𝒂 = 𝑩
ଵ
ଶ𝜶 

𝒃 = 𝑩ି
ଵ
ଶ𝜷 

（𝑩 is symmetric） 

൭൬𝑩
ଵ
ଶ𝜶൰

்

൬𝑩
ଵ
ଶ𝜶൰൱ ൭൬𝑩ି

ଵ
ଶ𝜷൰

்

൬𝑩ି
ଵ
ଶ𝜷൰൱ ≥ ൭൬𝑩

ଵ
ଶ𝜶൰

்

൬𝑩ି
ଵ
ଶ𝜷൰൱

ଶ

 

ቆ𝜶௧𝑩
ଵ
ଶ

𝑻

𝑩
ଵ
ଶ𝜶ቇ ቆ𝜷௧𝑩ି

ଵ
ଶ

𝑻

𝑩ି
ଵ
ଶ𝜷ቇ ≥ ቆ𝜶௧𝑩

ଵ
ଶ

𝑻

𝑩ି
ଵ
ଶ𝜷ቇ

ଶ

 

൬𝜶்𝑩
ଵ
ଶ𝑩

ଵ
ଶ𝜶൰ ൬𝜷்𝑩ି

ଵ
ଶ𝑩ି

ଵ
ଶ𝜷൰ ≥ ൬𝜶்𝑩

ଵ
ଶ𝑩ି

ଵ
ଶ𝜷൰

ଶ

 

(𝜶்𝑩𝜶)(𝜶்𝑩ିଵ𝜶) ≥ (𝜶்𝜷)ଶ 

Condition of equality 

𝒂 = 𝑐𝒃 

This means that (𝜶்𝑩𝜶)(𝜶்𝑩ିଵ𝜶) is minimum value (𝜶்𝜷)ଶ, when the vector 𝒂 and 𝒃 

exist on same direction including inverse direction. 

We modify the inequation furthermore. 

𝑩
ଵ
ଶ𝜶 = 𝑐𝑩ି

ଵ
ଶ𝜷 

𝜶 = 𝑐𝑩ିଵ𝜷 

We divide both side by (𝜶்𝑩𝜶) 

(𝜶்𝜷)ଶ

𝜶்𝑩𝜶
≤ 𝜶்𝑩ିଵ𝜶 

(∵ 𝜶்𝑩𝜶 > 𝟎) 

𝜶்𝑩𝜶

(𝜶்𝜷)ଶ
≥ 𝜶்𝑩ିଵ𝜶 

ቆ∵
(𝜶்𝑩𝜶)

(𝜶்𝜷)ଶ
> 𝟎,   𝜶்𝑩ିଵ𝜶 > 𝟎, ቇ 

(𝜶்𝑩𝜶)

(𝜶்𝜷)(𝜶்𝜷)
≥ 𝜶்𝑩ିଵ𝜶 

(𝜶்𝑩𝜶)

𝜶்𝜷𝜷்𝜶
≥ 𝜶்𝑩ିଵ𝜶 

(∵ 𝜶்𝜷 = 𝜷்𝜶) 

Denoting、𝜶 = 𝑨, 𝜷 = 𝒈, 𝑩 = 𝑼 

𝑨  is normal vector of reference hyperplane. 𝒈  is vector connecting centers of two 



subpopulation.  𝑩
𝟏

𝟐 is symmetric matrix for rotation of the reference hyper vector. 

𝑨்𝑼𝑨

𝑨்𝒈𝒈்𝑨
≥ 𝑨்𝑼ି𝟏𝑨 

Condition of equality is obvious, because 𝑨்𝒈 and 𝒈்𝑨 are both inner product of vectors 𝑨 

and 𝒈, the inner product is maximum when the vectors are on same direction. We do not 

need to perform following calculation. 

𝜶 = 𝑐𝑩ିଵ𝜷 

𝑨 = 𝑐𝑼ି𝟏𝒈 

𝑼𝑨 = 𝑐𝒈 

 

Conclusion  

ℎ(𝑨) =
𝑨𝑼𝑨

𝑨𝒈𝒈𝑨
 reaches its minimum value 𝑨்𝑼ି𝟏𝑨 when 𝑨 = 𝑐𝑼ି𝟏𝒈. 

In other words, when vector 𝑼𝑨 is parallel to vector 𝒈, ℎ(𝑨) is minimum. 

For application this to discrimination analysis, we need to allocate actual data to 𝒈 and 𝑼  

We can use unit vector on the right line between centers of two subpopulation in the case 

there are only two subpopulations. For 𝑼, one possible idea is to use 𝐕 as 𝑼, because we 

want to minimize the ratio of variance of residuals to variance among average of 

subpopulations. 

𝑽 =  (𝒙𝒌𝒊 − 𝒙തതത)(𝒙𝒌𝒊 − 𝒙തതത)் 

ೖ

ୀଵ



ୀଵ

 

However, in this case, we do not need to calculate deviation of each data from center of 

subpopulation because there only two factor composing total variances. One is differences 

among subpopulation. The other is residual.   

𝑆𝑆௧௧ = 𝑆𝑆௦ௗ௨+𝑆𝑆௦௨௨௧ 

When we divide both side by 𝑆𝑆௦௨௨௧ 

𝑆𝑆௧௧

𝑆𝑆௦௨௨௧
=

𝑆𝑆௦ௗ௨

𝑆𝑆௦௨௨௧
+ 1 

From this we can understand that when ௌௌೌ

ௌௌೞೠ್ೠೌ
 is minimum, ௌௌೝೞೠೌ

ௌௌೞೠ್ೠೌ
 is minimum. 

This means that we can use total variance and covariance matrix instead of V=𝑆𝑆௦ௗ௨.  

This is the explanation of liner discrimination analysis by rotation of hyper ellipse. 

 

Exercise 

We implement discriminant analysis of example dataset in previous paragraph. 



Dataset 

data 

subpopulation sample No   𝑑ଵ         𝑑ଶ            

 1         1       5          8           

 1             2             7          4          

1             3             8          5          

 1             4             8          7          

  2             1             5          5         

  2             2             7          2          

  2             3             4          3          

  2             4             4          6  

Total average 

𝑑ଵ
ധധധ =

5 + 7 + 8 + 8 + 5 + 7 + 4 + 4

8
=

48

8
= 6 

𝑑ଶ
ധധധ =

8 + 4 + 5 + 7 + 5 + 2 + 3 + 6

8
=

40

8
= 5 

𝒅ന = ቀ
6
5

ቁ 

𝑑ଵଵ
തതതത =

5 + 7 + 8 + 8

4
=

28

4
= 7 

𝑑ଵଶ
തതതത =

5 + 7 + 4 + 4

4
=

20

4
= 5 

 

𝑑ଶଵ
തതതതത =

8 + 4 + 5 + 7

4
=

24

4
= 6 

𝑑ଶଶ
തതതതത =

5 + 2 + 3 + 6

4
=

16

4
= 4 

𝒅𝟏
തതതത = ቀ

7
5

ቁ 

𝒅𝟐
തതതത = ቀ

6
4

ቁ 

Vector connecting centers of subpopulations. 

𝒈 = 𝑐൫𝒅𝟏
തതതത − 𝒅𝟐

തതതത൯ = c ቀ
1
1

ቁ 

We calculate deviation from total average. 

 𝒙ଵଵ = ቀ
5
8

ቁ − ቀ
6
5

ቁ = ቀ
−1
3

ቁ, 𝒙ଵଶ = ቀ
7
4

ቁ − ቀ
6
5

ቁ = ቀ
1

−1
ቁ, 𝒙ଵଷ = ቀ

8
5

ቁ − ቀ
6
5

ቁ = ቀ
2
0

ቁ, 𝒎ଵସ = ቀ
8
7

ቁ − ቀ
6
5

ቁ = ቀ
2
2

ቁ 



𝒙𝟐𝟏 = ቀ
5
5

ቁ − ቀ
6
5

ቁ = ቀ
−1
0

ቁ ,  𝒙𝟐𝟐 = ቀ
7
2

ቁ − ቀ
6
5

ቁ = ቀ
1

−3
ቁ ,  𝒙𝟐𝟑 = ቀ

4
3

ቁ − ቀ
6
5

ቁ = ቀ
−2
−2

ቁ , 𝒎𝟐𝟒 = ቀ
4
6

ቁ − ቀ
6
5

ቁ = ቀ
−2
1

ቁ 

𝒖் = ቀ
−1 1    2 2 −1 1 −2 −2
3 −1   0 2    0  3  −2  1

ቁ 

𝑼 = 𝒖𝒖் = ቀ
20 −1
−1 28

ቁ 

𝑼ି𝟏 =
1

559
ቀ

28 1
1 20

ቁ 

𝑨 = 𝑐𝑼ି𝟏𝒈 

𝑨 = 𝑐
ଵ

ହହଽ
ቀ

28 1
1 20

ቁ ቀ
1
1

ቁ = 𝑐
ଵ

ହହଽ
ቀ

29
21

ቁ   

We select 𝑐 = 559 

𝑨 = ቀ
29
21

ቁ 

This is conclusion. We confirmed that we can obtain same result by operation by ANOVA 

and linear algebraic procedure. Advantage of linear algebraic procedure is simplicity of 

operation process. We do not need separation of variances and differential. One of the 

weakness of the linear algebraic procedure is difficulty of understanding of theoretical 

explanation particularly for readers who are unfamiliar with linear algebra. However, the 

theory itself is rather simple and not difficult. The author recommends reading of V-2-6. 

Maximum and minimum, Method of Lagrange multipliers for getting background knowledge. 

Theoretical weakness of linear algebraic procedure is selection of 𝒈. In the case when there 

are only two subpopulations vector 𝒈 is on the straight line connecting two centers. This is 

because, the distance on the line is expressed the difference between the two populations. 

When there are more than three subpopulations, we should consider how to draw the line, On 

of the method is to draw the multiple regression line among center of subpopulation. However, 

in the case when number of variables are more than number of subpopulation, we cannot 

estimate the multiple regression line. In the first place, the author does not know there exist 

such case in reality. When there exist many variables, the relation between variables are 

complex and we should not select linear discrimination analysis for prediction of 

subpopulation. There are many other methods to categorize data such as principle component 

analysis (PCA), factor analysis (FA), multidimensional scaling method (MDS)、 cluster 

analysis and so on. The merit of liner discriminant analysis is flexibility of threshold. We can 

put our policy and philosophy in the selection of threshold, because discriminant score is 

simple length from reference hyperplane.  

 



VI-1-3-5. Threshold of discrimination score 

We can understand how to get optimal gradient of hyperplane. As an example, the author 

draws a line of threshold to include the point of total mean in Figure 70, this is because the 

author has no information of distribution of each subpopulation. The author hypothesizes 

homoscedasticity between two subpopulations from visual information from the scatter 

graph of the data. The author has no confidence for his judgement. However, the threshold 

line of discrimination score Z separate data to correct subpopulation as sown in figure 70. 

The value of the threshold is obtained by putting center of total distribution 𝑑ଵ = 6, 𝑑ଶ = 5  

in formula of discrimination score. All the data are completely separated to correct sub 

population as following figure. 

 

                    
              

   Fig. 70. Separation by threshold line of discrimination score 𝑍 = 29𝑑ଵ + 21𝑑ଶ = 279 

Red circle: subpopulation1, blue circle: subpopulation2. Bleu line. Threshold line. 

 

     Data 

      subpopulation          𝑑ଵ,       𝑑ଶ,          𝑍         𝑍 − threshold(279) 

        1              5    8   313      34 

        1              7    4   287       8 

        1              8    5   337      58 

        1              8    7   379     100 

        2              5    5   250     -29 

        2              7    2   245     -34 

        2              4    3   179    -100 

        2              4    6   242     -37 



 

VI-1-3-6. Additional discussion for application of discriminant analysis. 

 

When we hypothesize normal distribution in each subpopulation, we can estimate probability 

of error by the judgement by normalized distance by standard deviation from the center of 

subpopulation. In upper case, the threshold exists at same distance from each center of 

subpopulation. The probability of error is the same in both subpopulations. We need not to 

make the probability the same. In many cases meaning of error judgement of A for correct B 

and error judgement of B for correct A is different. As an example, in simple rapid test of 

disease, the purpose of the test is to find out infected individuals. The seriousness of 

diagnostic error that judges true infected individual as healthy individual should be strictly 

avoided. For this, we need to accept error that judges healthy individual as infected individual. 

In that case, we should set the threshold to minimize the possibility of misjudgement that 

diagnose infected individual as healthy individuals. We set the threshold line closer to center 

of subpopulation of healthy individuals as shown in figure 71.   

              

          Fig. 71. Configuration of threshold of discrimination score. 

 

We understand that we can implement discriminant analysis without knowledge ANOVA and 

calculation of differential. This is same as multiple linear regression analysis. In discriminant 

analysis, we need to optimize number of variables, because we can simplify the operation in 

case of diagnosis. This is also important in other applications. Too much variables are 

inefficient and makes confusion. This is also same as multiple linear regression. In the 

explanation of this text, the author presumes equal variances among subpopulation. This is 

sometimes unnatural. On the other side, he does not presume equal variances among variables. 

However, in several case, we need normalization of data by dividing raw data by standard 



deviation of each variables to make equality of variance among variables as in multiple linear 

regression. However, when we normalize the data, liner discriminant analysis became no 

meaning, because data distribution forms hyper sphere. When we emphasize orthogonality of 

variables, discriminant analysis using principle component scores may be a possible approach. 

However, it may make unnecessary confusion relating to the meaning of components, and it 

may be inefficient. There are many discussions relating to discrimination analyses. We should 

select proper method considering purpose of analysis and nature of data. 

          

 


