
VI-2-2. Multi-dimensional Scaling method; MDS 

VI-2-2-1. What is MDS 

Purpose of Multi-dimensional Scaling method (MDS) is similar as that of Principle 

Component Analysis (PCA). MDS and PCA put data in multi-dimensional space for 

observation of relationship among data. However, forms of given data are different 

between MDS and PCA.  A datum is composed from more than two measurement items 

in PCA. When we consider average vectors of each measurement item, length of vector 

is standard deviation, angle between vectors is arccosine, and data can be expressed by 

linear combinations in multi-dimensional space. Given data in MDS are distance 

between survey points. Rhetorically, distance means not only physical distance in 

Euclidean space (orthogonal space). All difference can be recognized as “distance” when 

it satisfies definition of distance. The definition is 

1. Distance from A to B is equal to Distance from B to A 

2. Distance from A to C is no longer than sum of distance from A to B and distance 

from B to C. 

However, we consider the distances is Euclidean distance in this explanation for 

simplification. We learned congruency of triangle in junior high school. We can allocate 

3 point on two-dimensional flat. We can add another point in three-dimensional space if 

we know the distance from the new point to all of the three points on the flat.  Generally, 

the points form delta corn. Of course, they sometimes form plane locus in particular cases. 

Similarly, 5 points can allocate in 4-dimansional space. Theoretically, we can allocate all 

data in n-1-dimensional space at most, when the size of data is n. In reality, obtainable 

data include limited number of components and most of the dimensions come into the 

space by error and the space is depressed in the directions of vectors of the component 

made by error. Neglecting such dimensions, we can allocate all data in limited 

dimensional space, ideally 2 or 3-dimension.  This is a simplest explanation of MDS. A 

datum has a number of observed measurement items in PCA. We can estimate angle 

between two vectors of observed value from the correlation efficiency. From the lengths 

of vectors (standard deviation) and angles among vectors, we can frame multi-

dimensional space. This is comparable to proof of congruence of triangles by two lengths 

and an angle between the sides. For this reason, maximum dimension of the space is 𝑝 

when number of observed measurement items is 𝑝. Comparatively, space is fremed only 

by distance in MDS. This is comparable to proof of congruence of triangle by length of 

three side. Data form and calculation procedure are different, though purposes of the 

analyses are the same between MDS and PCA.  

 



MDS is used widely in ecological survey, because we can identify structure of data 

depending on the difference among data when the difference satisfies the definition of 

distance.  However, we can use MDS in other disciplines.  

 

VI-2-2-1. Calculation of MDS 

VI-2-2-1-1. Problem setting of MDS 

We regularly see result of MDS expressed by 2-dimensional or 3-dimentional plots in 

MDS to express differences of species composition among sampling site or differences of 

sampling site among species in studies of distribution ecology. These results are often 

used for categorization of sampling site or species.  

Table 45. Species composition of each site (Original data).   

 Species１ Species 2 ⋯ Species m 

Site 1 𝑥ଵଵ 𝑥ଵଶ ⋯ 𝑥ଵ௠ 

Site 2 𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶ௠ 

⋮ ⋮ ⋮ ⋱ ⋮ 

Site n 𝑥௡ଵ 𝑥௡ଶ ⋯ 𝑥௡௠ 

We need to make table of coordinate as shown in Table 46 to express the distribution of 

the site in two-dimensional space. 

Table 46. Coordinate table of sites. 

                

 

 

 

 

 

This is already form of matrix 

𝑿 = ൮

𝑥ଵଵ 𝑥ଵଶ

𝑥ଶଵ 𝑥ଶଶ

⋯ 𝑥ଵ௠

⋯ 𝑥ଶ௠

⋮ ⋮
𝑥௡ଵ 𝑥௡ଶ

⋱ ⋮
⋯ 𝑥௡௠

൲ , 𝒀 = ൮

𝑦ଵଵ 𝑦ଵଶ

𝑦ଶଵ 𝑦ଶଶ

⋮
𝑦௡ଵ

⋮
𝑦௡ଶ

൲ 

We want to get 𝒀 from 𝑿 by transformation 𝑨. 

Mathematic equation is as follow、 

𝑿𝑨 = 𝒀 

  𝑨 = ൮

𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ

⋮
𝑎௠ଵ

⋮
𝑎௠ଶ

൲ 

The equation is question of optimization of irregular simultaneous equation.  

 𝑌ଵ(axis 1) 𝑌ଶ(axis 2) 

Site 1 𝑦ଵଵ 𝑦ଵଶ 

Site 2 𝑦ଶଵ 𝑦ଶଶ 

⋮ ⋮ ⋮ 

Site n 𝑦௡ଵ 𝑦௡ଶ 



Theoretically, we could obtain optimum solution of 𝑨, when we knew 𝒀. However, we do 

not know 𝒀 actually.  

When we presume that 𝒀  is expressing the points expressed by 2-dimensional 

coordinate such as latitude and longitude and we are requested to a table expressing 

distances among sites, even students in junior high school can calculate the distances 

using the differences using Phythagorean theorem. (This is an approximate treatment. 

We cannot calculate distances on the surface of the earth without curvature of the earth. 

The author is presuming approximate flatness of surface of the earth in short distance.)  

 

Table 47. Round robin table of distances 

  Site 1 Site 2 ⋯ Site n 

Site1 𝑑ଵଵ 𝑑ଵଶ ⋯ 𝑑ଵ௡ 

Site 2 𝑑ଶଵ 𝑑ଶଶ ⋯ 𝑑ଶ௡ 

⋮ ⋮ ⋮ ⋱ ⋮ 

Site n 𝑑௡ଵ 𝑑௡ଶ ⋯ 𝑑௡௡ 

𝑑௜௜ = 0, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑑௜௜ is distance between the same site, and 𝑑௜௝ = 𝑑௝௜. 

Matrix expressing all distances is as follow. 

𝑫 = ൮

0 𝑑ଵଶ

𝑑ଶଵ 0
⋯ 𝑑ଵ௡

⋯ 𝑑ଶ௡

⋮ ⋮
𝑑௡ଵ 𝑑௡ଶ

⋱ ⋮
⋯ 0

൲ 

Matrix  𝑫 is symmetric and diagonal matrix elements of  𝑫 is 0. Classical metric MDS 

is inverse operation of this calculation in which we estimate 𝒀 from given 𝑫. Some may 

think that is very easy procedure. They draw a line segment corresponding to the 

distance of a pair of sites on a flat. Then they draw a circles of which radius are 

corresponding to the distance to third point from an end of the line segment and draw 

another circle from the other end of the line segment of which radius is is the same as 

the other end of the line segment.  The third point is existing at the inter section of the 

circles. Then draw three spheres from the three points on a flat in 3-dimensional space. 

The 4th point is existing at the intersection of the three spheres. Repeating this we can 

allocate all points in (n-1)-dimensional space. This is correct. However, we have to make 

(n-1)-dimensional compasses for drawing distribution. There is no such a convenient tool. 

I think that it is possible to draw distribution using mathematical calculation. However, 

if the data include measurement errors, we could not fix the points clearly and last point 

will have huge error range.  For this reason, we cannot discuss statistical significance 

of the result. However, it not so bad idea to find our direction to establish adequate 

method. I will try this innocent idea in next paragraph. 



 

VI-2-2-1-2. Implementation of the innocent idea. (a roundabout path) 

It is not necessary to perform following operation logically. However, it is simplest 

example of MDS and we can learn meaning of each step of MDS. 

The most famous example of Phythagorean theorem is following equation.  

3ଶ + 4ଶ = 5ଶ 

We use this as a simple example 

This is right triangle. Everyone notices a method to allocate rectangle angle at origin 

and allocate the other angles on vertical and horizontal axes.  

α(0,0), 𝛽(4, 0), 𝛾(3, 0) 

We express this in a matrix as follow 

𝒀 = ൭
0 0
4 0
0 3

൱ 

We do not need to use our brain to find this solution. However, this is not only one 

solution. This is one of the possible solution. We call this solution as solution 1. 

α′(−2, −1), 𝛽′(2, −1), 𝛾′(−2.  2) 

is another possible solution 

For the confirmation, we calculate the distances 

𝑑஑ᇱఉᇱ = (2 − (−2), −1 − (−1) = (4,0) 

𝑑ఉᇱఊᇱ = (−2 − 2,2 − (−1) = (−4,3) 

𝑑ఊᇱఈᇱ = (−2 − (−2), −1 − 2) = (0, −3) 

𝑑஑ᇱఉᇱ
ଶ = 4ଶ 

𝑑ఉᇲఊᇲ
ଶ = (−4)ଶ + 3ଶ = 25 = 5ଶ 

𝑑ఊᇱఈᇱ
ଶ = (−3)ଶ = 3ଶ 

We call this solution as solution 2. 

How about next. 

α′′ ቆ
1

2
− √3, −1 −

√3

2
ቇ , 𝛽′′ ቆ√3 +

1

2
, 1 −

√3

2
ቇ , 𝛾′′൫−√3 − 1, −1 + √3  ൯ 

Confirmation 

𝑑ఈᇲఉᇲ
ଶ = ቆ

1

2
− √3 − ൬√3 +

1

2
൰ቇ

ଶ

+ ቌ−1 −
√3

2
− ቆ1 −

√3

2
ቇቍ

ଶ

= 12 + 4 = 4ଶ 

𝑑ఉᇲఊᇲ
ଶ = ቆ√3 +

1

2
− ൫−√3 − 1൯ቇ

ଶ

+ ቌ1 −
√3

2
− ൫−1 + √3൯ቍ

ଶ

= ൬2√3 +
3

2
൰

ଶ

+ ቆ2 −
3√3

2
ቇ

ଶ

 



= 4 × 3 + 2 × 3√3 +
9

4
+ 4 − 2 × 3√3 +

9 × 3

4
= 12 +

9

4
+ 4 +

9 × 3

4
= 25 = 5ଶ

 

𝑑ఊᇲఈᇲ
ଶ = ቆ−√3 − 1 − ൬

1

2
− √3൰ቇ

ଶ

+ ቌ−1 + √3 − ቆ−1 −
√3

2
ቇቍ

ଶ

= ൬−
3

2
൰

ଶ

+ ቆ
3√3

2
ቇ

ଶ

=
9

4
+

9 × 3

4
= 9 = 3ଶ 

This is also one of the solutions. There are infinite number of solutions. 

Solution 2: triangle αᇱβᇱγ′ is obtained by parallel translation of triangle αβγ by 2 to the 

left and by 1 to the bottom. Triangle α′′β′′γ′′ is obtained by rotating గ

଺
 anticlockwise.  

Confirmation 

  Matrix of rotation anticlockwise is as follow  

ቀ
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
ቁ 

ቌ
cos

𝜋

6
sin

𝜋

6

− sin
𝜋

6
cos

𝜋

6

ቍ =

⎝

⎜
⎛

√3

2

1

2

−
1

2

√3

2 ⎠

⎟
⎞

 

൭
−2 −1
2 −1

−2 2
൱

⎝

⎜
⎛

√3

2

1

2

−
1

2

√3

2 ⎠

⎟
⎞

=

⎝

⎜⎜
⎛

1

2
− √3 −1 −

√3

2

√3 +
1

2
1 −

√3

2

−√3 − 1 −1 + √3⎠

⎟⎟
⎞

 

It is trivial that parallel translation and rotation cause no change in relative positional 

relationship. The implication obtained in this trial is that we can fix the shape and size 

of triangle from the information of distances among 3 points, though we need to consider 

appropriate position and angle of the viewing point by ourselves.  

 

Question to obtain shape and size of triangle from length of three sides is typical question 

in elementary geometry called sine theorem and cosine theorem.  Mathematically this 

question is essential question to obtain circumcircle of the triangle as showing in figure 

79. 



                        

                      Fig. 79. Circumcircle of triangle  

Here, O is center of circumcircle, and r is length of radius. 

We assume lengths of each side as follow. 

⌈AB⌉ = 𝑎, ⌈BC⌉ = 𝑏, ⌈CA⌉ = 𝑐 

Point Hଵ, Hଶ, 𝑎𝑛𝑑 Hଷ are foots of perpendicular form center of the circle, and  

∠OHA = ∠OHB = ∠OHC =
𝜋

2
 

⊿OAB, ⊿OBC and  ⊿OCA are isosceles triangle.  

⊿OHଵA ≡ ⊿OHଵ𝑎B、⊿OHଶB ≡ ⊿OHଶC、⊿OHଷC ≡ ⊿OHଷA 

Most seplest proof of sine thoerem and cosine theorem is as follow 

At first, we make following figure 

            
                      Fig.80. Sine theorem 1. 

H is the foot of perpendicular from A to side BC. 

⌈AH⌉ = 𝑎 sin 𝛽 = 𝑐 sin 𝛾 

Concerning H’, the foot from C to side AB 

𝑐 sin 𝛼 = 𝑏 sin 𝛽 

Concerning H’’, the foot from B to side AC 

𝑏 sin 𝛾 = 𝑎 sin 𝛼 

This is sine theorem 

For cosine theorem, 

⌈BH⌉ = 𝑎 cos 𝛽 

⌈HC⌉ = 𝑐 cos 𝛾 

⌈BH⌉ + ⌈HC⌉ = ⌈BH⌉ = 𝑏 



⊿AHC is rectangle triangle. Using Pythagorean theorem, 

⌈AH⌉ଶ + ⌈HC⌉ଶ = ⌈AC⌉ଶ 

𝑎ଶsinଶ𝛽 + (𝑏 − 𝑎 cos 𝛽)ଶ = 𝑐ଶ 

𝑎ଶsinଶ𝛽 + 𝑏ଶ − 2𝑎𝑏 cos 𝛽 +𝑎ଶ cosଶ 𝛽 = 𝑐ଶ 

𝑎ଶsinଶ𝛽+𝑎ଶ cosଶ 𝛽 + 𝑏ଶ − 2𝑎𝑏 cos 𝛽 = 𝑐ଶ 

𝑎ଶ(sinଶ𝛽 + cosଶ 𝛽) + 𝑏ଶ − 2𝑎𝑏 cos 𝛽 = 𝑐ଶ 

𝑎ଶ + 𝑏ଶ − 𝑐ଶ = 2𝑎𝑏 cos 𝛽 

cos 𝛽 =
𝑎ଶ + 𝑏ଶ − 𝑐ଶ

2𝑎𝑏
 

Similarly, 

cos 𝛼 =
𝑎ଶ + 𝑐ଶ − 𝑏ଶ

2𝑎𝑐
 

cos 𝛾 =
𝑏ଶ + 𝑐ଶ − 𝑎ଶ

2𝑏𝑐
 

This is enough as a proof, though we cannot understand the relation between r and 

length of sides. We transform sine theorem to another form.  

The relation between radius 𝑟 and angles is as follow. 

            

                            Fig. 81. Sine theorem 2 

We move C to C′ along the circle. At C′, 

⌈BC′⌉ = 2𝑟 

∠ACB and ∠AC′B are sharing the same chord AB. 

∠ACB = ∠ACᇱB = γ 

Line segment BC′ is diameter of the circle.  

∠CᇱAB =
𝜋

2
 

From this, 
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𝑎

2𝑟
= sin 𝛾 

Similarly, 

𝑏

2𝑟
= sin 𝛼 

𝑐

2𝑟
= sin 𝛽 

This is sine theorem. Following equation is mathematically more beautiful. 

𝑎

sin 𝛾
=

𝑏

sin 𝛼
=

𝑐

sin 𝛽
= 2𝑟 

Frim this, we can obtain r. 

sin 𝛾 = ඥ1 − cosଶ 𝛾 = ඨ1 − ቆ
𝑏ଶ + 𝑐ଶ − 𝑎ଶ

2𝑏𝑐
ቇ

ଶ

=
1

2𝑏𝑐
ඥ(4𝑏ଶ𝑐ଶ − (𝑏ଶ + 𝑐ଶ − 𝑎ଶ)ଶ) 

(𝑏ଶ + 𝑐ଶ − 𝑎ଶ)ଶ = (𝑏ଶ + 𝑐ଶ)ଶ − 2(𝑏ଶ + 𝑐ଶ)𝑎ଶ + 𝑎ସ 

= 𝑏ସ + 2𝑏ଶ𝑐ଶ + 𝑐ସ − 2𝑎ଶ𝑏ଶ − 2𝑐ଶ𝑎ଶ + 𝑎ସ 

4𝑏ଶ𝑐ଶ − (𝑏ଶ + 𝑐ଶ − 𝑎ଶ)ଶ = 4𝑏ଶ𝑐ଶ − 𝑏ସ − 2𝑏ଶ𝑐ଶ − 𝑐ସ + 2𝑎ଶ𝑏ଶ + 2𝑐ଶ𝑎ଶ − 𝑎ସ

= −𝑎ସ − 𝑏ସ − 𝑐ସ + 2𝑏ଶ𝑐ଶ + 2𝑎ଶ𝑏ଶ + 2𝑐ଶ𝑎ଶ − 𝑎ସ 

= 𝑎ଶ𝑏ଶ −
1

2
(𝑎ଶ − 𝑏ଶ)ଶ + 𝑏ଶ𝑐ଶ −

1

2
(𝑏ଶ − 𝑐ଶ)ଶ + 𝑐ଶ𝑎ଶ −

1

2
(𝑐ଶ − 𝑎ଶ)ଶ 

sin 𝛾 ==
1

2𝑏𝑐
ඨ𝑎ଶ𝑏ଶ −

1

2
(𝑎ଶ − 𝑏ଶ)ଶ + 𝑏ଶ𝑐ଶ −

1

2
(𝑏ଶ − 𝑐ଶ)ଶ + 𝑐ଶ𝑎ଶ −

1

2
(𝑐ଶ − 𝑎ଶ)ଶ 

2𝑟 =
𝑎

sin 𝛾
=

2𝑎𝑏𝑐

ට𝑎ଶ𝑏ଶ −
1
2

(𝑎ଶ − 𝑏ଶ)ଶ + 𝑏ଶ𝑐ଶ −
1
2

(𝑏ଶ − 𝑐ଶ)ଶ + 𝑐ଶ𝑎ଶ −
1
2

(𝑐ଶ − 𝑎ଶ)ଶ

 

𝑟 =
𝑎𝑏𝑐

ට𝑎ଶ𝑏ଶ −
1
2

(𝑎ଶ − 𝑏ଶ)ଶ + 𝑏ଶ𝑐ଶ −
1
2

(𝑏ଶ − 𝑐ଶ)ଶ + 𝑐ଶ𝑎ଶ −
1
2

(𝑐ଶ − 𝑎ଶ)ଶ

 

Using sine theorem and cosine theorem, we could obtain shape and size of triangle. The 

size can be expressed by 𝑟 of circumcircle.  

Let us go back to first figure of circumcircle (Fig.79).  Central angle ∠AOB is sharing 

the same chord AB with angle of circumference ∠ACB . Central angle is twice of 

circumference angle. Therefor, 

∠AOB = 2γ 

Similarly, 



∠BOC = 2α 

∠COA = 2𝛽 

We have to decide the rotation of the triangle. 

The author thinks that easiest calculation is the best. We allocate vector OAሬሬሬሬሬ⃗  on 

horizontal axis. VectorOBሬሬሬሬሬ⃗  is obtained by rotating vector OAሬሬሬሬሬ⃗  2 γ  anticlockwise, and 

vector OCሬሬሬሬሬ⃗  is obtained by rotating vector OAሬሬሬሬሬ⃗  2𝛽 clockwise.  

Formula of rotation anticlockwise is following matrix. 

ቀ
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
ቁ 

Conclusively,  

OB = (𝑟 0) ൬
cos 2𝛾 sin 2𝛾

− sin 2𝛾 cos 2𝛾
൰ 

OB = (𝑟 0) ൬
cos 2𝛾 sin 2𝛾

− sin 2𝛾 cos 2𝛾
൰ 

= (𝑟cos 2𝛾 𝑟 sin 2𝛾) = (𝑟(1 − 2 sinଶ 𝛾) 2𝑟 sin 𝛾 cos 𝛾) 

= ൭𝑟(1 − 2 ቀ
𝑎

2
ቁ

ଶ

) 2𝑟 ቀ
𝑎

2
ቁ ቆ

𝑏ଶ + 𝑐ଶ − 𝑎ଶ

2𝑏𝑐
ቇ൱ 

= ൭𝑟(1 −
𝑎

2

ଶ

) 𝑟𝑎 ቆ
𝑏ଶ + 𝑐ଶ − 𝑎ଶ

2𝑏𝑐
ቇ൱ 

OC = (𝑟 0) ൬
cos −2𝛽 sin −2𝛽

− sin −2𝛽 cos −2𝛽
൰ = (𝑟 0) ൬

cos 2𝛽 − sin 2𝛽
sin 2𝛽 cos 2𝛽

൰ = (𝑟cos 2𝛽 − rsin 2𝛽) 

= ൭𝑟(1 −
𝑐

2

ଶ

) 𝑟𝑎 ቆ
𝑏ଶ + 𝑎ଶ − 𝑐ଶ

2𝑎𝑏
ቇ൱ 

The author does this calculation for the first time in 50yeas after graduation of junior 

high school.  We cannot expand this method to higher dimensional space directly. For 

this reason, we can say that we did meaningless trial. However, when we can make 

triangle as a flat, we can make multi-dimensional polyhedron in multi-dimensional space 

by connecting triangle.  Following is an example of 4 points in 3-dimensional space. 

                        

           Fig.82. Cubic diagram of 4 points and origin. 

When distances between A and B, A and C, A and D, B and C, B and D and D and C are 



given correctly, we can make tetrahedron. When we fix the origin of the coordinate, we 

can express the distance as follow. 

ABതതതത = ⌈𝑉஺ − 𝑉஻⌉ 

ACതതതത = ⌈𝑉஺ − 𝑉஼⌉ 

ADതതതത = ⌈𝑉஺ − 𝑉஽⌉ 

BCതതതത = ⌈𝑉஻ − 𝑉஼⌉ 

BDതതതത = ⌈𝑉஻ − 𝑉஽⌉ 

CDതതതത = ⌈𝑉஼ − 𝑉஽⌉ 

This relation is stable when we move the origin of vectors to the other points as shown 

in figure 82.  In the case there are more than 5 points, if all distances are measured 

correctly and they have only 3-dimensional elements. We can make more complex 

polyhedron in 3-dimensional space.  As shown in the figure 82, we can allocate the 

origin of the space in any point in the space.  

 

VI-2-2-1-3. Classical MDS (Metric MDS) 

Given data is following distance matrix. 

𝑫 = ൮

0 𝐷ଵଶ

𝐷ଶଵ 0
⋯ 𝐷ଵ௡

⋯ 𝐷ଶ௡
⋯ ⋯

𝐷௡ଵ 𝐷௡ଶ

⋱ ⋮
⋯ 0

൲ 

We define matrix of square of distances as follow. 

𝑫𝟐 = ൮

0 𝐷ଵଶ
ଶ

𝐷ଶଵ
ଶ 0

⋯ 𝐷ଵ௡
ଷ

⋯ 𝐷ଶ௡
ଶ

⋯ ⋯
𝐷௡ଵ

ଶ 𝐷௡ଶ
ଶ

⋱ ⋮
⋯ 0

൲ 

In this chapter, 𝑫𝟐 is not square of 𝑫. 

We want to know the vectors from origin to each point. The matrix of vector is as follow. 

𝑽 = ൮

𝑽ଵ

𝑽ଶ

⋮
𝑽𝒏

൲ 

𝐷௜௝ଶ = ඃ𝑽௜ − 𝑽௝ඇ 

When the Vectors have m-dimension  

𝑽 = ൮

𝑣ଵଵ 𝑣ଵଶ ⋯ 𝑣ଵ௠

𝑣ଶଵ 𝑣ଶଶ
⋯ 𝑣ଶ௠

⋮  ⋮  ⋱  ⋮
𝑣௡ଵ 𝑣௡ଶ

⋯ 𝑣௡௠

൲ 

From trial of our innocent idea, we could make clear the procedure of calculation of MDS, 

and we understood that we have to allocate origin of coordinate by ourselves considering 

visual effects. This is essential, as coordinate and viewing direction are strongly affect 



our recognition of phenomena. Most general idea is allocating coordinate on the median 

point of the data. Median point is representative of all data. When we select origine of 

coordinate on median point of the data, that means we treat all data in even weight. This 

makes easier the calculation statistical calculations. 

Grabbing vertex of triangle formed by two vectors at origin putting the distance on the 

base of triangle. Making tetrahedron from 3 triangles. Lining the tetrahedrons in all the 

direction of the space. This procedure is analogical image of MDS. For this, we use 

centralization matrix. Generally, we use parallel translation for this procedure. We can 

express the procedure in a formula by using centralization matrix.   

It is too hastily to show the formula. The author explains the function of centralization 

matrix step by step from single parallel translation.   

Translation of coordination to median point is subtraction of average coordinate from 

each coordinate datum. This is expressed as follow. 

𝑣௜௝ −
1

𝑛
෍ 𝑣௞௝

௡

௞ୀଵ

 

Second term of the equation means average (median point). 

When we expand sign of sum, it expressed as follow. 

𝑣௜௝ −
1

𝑛
𝑣ଵ௝ −

1

𝑛
𝑣ଶ௝ − ⋯

1

𝑛
𝑣ଶ௝ 

Then we transform this as follow 

−
1

𝑛
𝑣ଵ௝ −

1

𝑛
𝑣ଶ௝ − ⋯ + ൬1 −

1

𝑛
൰ 𝑣௜௝ − ⋯ −

1

𝑛
𝑣௡௝ 

This can be expressed by following inner product of two vectors. 

൬−
1

𝑛
𝑣ଵ௝ −

1

𝑛
𝑣ଶ௝ − ⋯ + ൬1 −

1

𝑛
൰ 𝑣௜௝ − ⋯ −

1

𝑛
𝑣௡௝൰ = ൬−

1

𝑛
 −

1

𝑛
 ⋯ 1 −

1

𝑛
⋯ −

1

𝑛
 ൰

⎝

⎜
⎜
⎛

𝑣ଵ௝

𝑣ଶ௝

⋮
𝑣௜௝

⋮
𝑣௡௝⎠

⎟
⎟
⎞

 

We can expressed all translation by following multiplication of matrixes.  

𝑽 = ൮

𝑣ଵଵ 𝑣ଵଶ ⋯ 𝑣ଵ௠

𝑣ଶଵ 𝑣ଶଶ
⋯ 𝑣ଶ௠

⋮  ⋮  ⋱  ⋮
𝑣௡ଵ 𝑣௡ଶ

⋯ 𝑣௡௠

൲ 

𝑽ᇱ =

⎝

⎜
⎜
⎜
⎛

1 −
1

𝑛
−

1

𝑛
⋯ −

1

𝑛

−
1

𝑛
1 −

1

𝑛
⋯ −

1

𝑛
⋮  ⋮  ⋱  ⋮

−
1

𝑛
−

1

𝑛
⋯ 1 −

1

𝑛⎠

⎟
⎟
⎟
⎞

൮

𝑣ଵଵ 𝑣ଵଶ ⋯ 𝑣ଵ௠

𝑣ଶଵ 𝑣ଶଶ
⋯ 𝑣ଶ௠

⋮  ⋮  ⋱  ⋮
𝑣௡ଵ 𝑣௡ଶ

⋯ 𝑣௡௠

൲ 



We call following matrix as centralizing matrix. 

𝑮 =

⎝

⎜
⎜
⎜
⎛

1 −
1

𝑛
−

1

𝑛
⋯ −

1

𝑛

−
1

𝑛
1 −

1

𝑛
⋯ −

1

𝑛
⋮  ⋮  ⋱  ⋮

−
1

𝑛
−

1

𝑛
⋯ 1 −

1

𝑛⎠

⎟
⎟
⎟
⎞

 

Formula 76 

General expression of the matrix is as follow 

𝑮௡ = 𝑰௡ −
1

𝑛
𝟏𝒏𝟏௡

୘ 

𝑰௡is 𝑛 × nunit vector. 

𝟏𝒏 = ቌ

1
1
⋮
1

ቍ 

𝟏𝒏
୘ = (1 1 ⋯ 1) 

From this, 

𝟏𝒏𝟏௡
୘ = ቌ

1 1
1 1

⋯ 1
⋯ 1

⋮ ⋮
1 1

⋱ ⋮
⋯ 1

ቍ 

൫𝟏𝒏𝟏௡
୘൯

𝟐
= ቌ

𝑛 𝑛
𝑛 𝑛

⋯ 𝑛
⋯ 𝑛

⋮ ⋮
𝑛 𝑛

⋱ ⋮
⋯ 𝑛

ቍ = 𝑛 ቌ

1 1
1 1

⋯ 1
⋯ 1

⋮ ⋮
1 1

⋱ ⋮
⋯ 1

ቍ = 𝑛𝟏𝒏𝟏௡
୘ 

Centralizing matrix 𝑮௡ has unique and convenient characteristics. 

First, 

𝑮௡
𝒌 = 𝑮௡ 

Confirmation 

𝑮௡
𝟐 = ൬𝑰௡ −

1

𝑛
𝟏𝒏𝟏௡

୘൰ ൬𝑰௡ −
1

𝑛
𝟏𝒏𝟏௡

୘൰ 

= 𝑰௡𝑰௡ − 𝟐𝑰௡

1

𝑛
𝟏𝒏𝟏௡

୘ +
1

𝑛ଶ
൫𝟏𝒏𝟏௡

୘൯
𝟐
 

= 𝑰௡ −
1

𝑛
𝟏𝒏𝟏௡

୘ = 𝑮௡ 

∵ 𝑰௡𝑰௡ = 𝑰௡, 𝑰௡𝟏𝒏𝟏௡
୘ = 𝟏𝒏𝟏௡

୘, ൫𝟏𝒏𝟏௡
୘൯

𝟐
= 𝑛𝟏𝒏𝟏௡

୘ 

This is logically trivial. Because, center is only one. When we centralize data, we cannot 

centralize any more. However, this character is important in the calculation. As an 



example, we centralize 𝐀 = ቌ

𝑎
𝑏
𝑐
𝑑

ቍ by 𝑮௡. 

This is the inverse operation of the operation in which we make centralizing matrix.  

𝑮ସ𝑨 = ൬𝑰ସ −
1

4
𝟏𝟒𝟏ସ

୘൰ ቌ

𝑎
𝑏
𝑐
𝑑

ቍ = ቌ

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

ቍ ቌ

𝑎
𝑏
𝑐
𝑑

ቍ −
1

4
ቌ

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

ቍ ቌ

𝑎
𝑏
𝑐
𝑑

ቍ 

= ቌ

𝑎
𝑏
𝑐
𝑑

ቍ −
1

4
ቌ

𝑎 + 𝑏 + 𝑐 + 𝑑
𝑎 + 𝑏 + 𝑐 + 𝑑
𝑎 + 𝑏 + 𝑐 + 𝑑
𝑎 + 𝑏 + 𝑐 + 𝑑

ቍ 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑎 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑏 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑐 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑑 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

Second term in each factor is written by fraction. The fraction means average.  

𝑮ସ(𝑮ସ𝑨) = ቌ

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

ቍ

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑎 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑏 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑐 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑑 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

−
1

4
ቌ

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

ቍ

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑎 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑏 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑐 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑑 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑎 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑏 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑐 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑑 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

−
1

4
൮

𝑎 + 𝑏 + 𝑐 + 𝑑 − (𝑎 + 𝑏 + 𝑐 + 𝑑)

𝑎 + 𝑏 + 𝑐 + 𝑑 − (𝑎 + 𝑏 + 𝑐 + 𝑑)

𝑎 + 𝑏 + 𝑐 + 𝑑 − (𝑎 + 𝑏 + 𝑐 + 𝑑)

𝑎 + 𝑏 + 𝑐 + 𝑑 − (𝑎 + 𝑏 + 𝑐 + 𝑑)

൲ 

 



=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑎 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑏 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑐 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑑 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

− 0 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑎 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑏 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑐 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4

𝑑 −
𝑎 + 𝑏 + 𝑐 + 𝑑

4 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

= 𝑮ସ𝑨 

We confirmed  

𝑮௡(𝑮௡𝑨) = (𝑮௡𝑮௡)ଶ𝑨 = 𝑮௡𝑨 

Secondly, 𝑮௡ has following character. 

𝑮௡𝟏𝒏 = 𝟏𝒏
୘𝑮௡ = 0 

Confirmation 

𝑮௡𝟏𝒏 = ൬𝑰௡ −
1

𝑛
𝟏𝒏𝟏௡

୘൰ 𝟏𝒏 = 𝑰௡𝟏𝒏 −
1

𝑛
𝟏𝒏൫𝟏௡

୘𝟏𝒏൯ = 𝟏𝒏 −
1

𝑛
𝑛𝟏𝒏 = 0 

𝑮௡𝟏𝒏 = 𝟏𝒏
୘ ൬𝑰௡ −

1

𝑛
𝟏𝒏𝟏௡

୘൰ = 𝟏𝒏
୘𝑰௡ −

1

𝑛
൫𝟏𝒏

୘𝟏𝒏൯𝟏௡
୘ = 𝟏𝒏

୘ −
1

𝑛
𝑛𝟏𝒏

୘ = 0 

 

We go back to matrix 𝑽. 

This is a matrixed obtained by lining up row vectors vertically as follow. 

𝑽 = ൮

𝑽ଵ

𝑽ଶ

⋮
𝑽𝒏

൲ = ൮

𝑣ଵଵ 𝑣ଵଶ ⋯ 𝑣ଵ௠

𝑣ଶଵ 𝑣ଶଶ
⋯ 𝑣ଶ௠

⋮  ⋮  ⋱  ⋮
𝑣௡ଵ 𝑣௡ଶ

⋯ 𝑣௡௠

൲ 

We consider matrix 𝑽𝑽୘. 

The author calls the matrix “matrix of inner products” personally. Because we call 𝑽୘𝑽 

of which factors are composed from variance and covariance of elements of data as 

variance-covariance matrix, and factors of 𝑽𝑽୘ are inner products of vector. Actually, 

this naming is not used generally. This naming may make confusion because matrix is a 

kind of vector, because we can consider inner product between matrixes, 𝑽 ∙ 𝑽୘. We call 

this inner product of matrix. Inner product of matrix is a scalar and name of inner 

product of matrix is authorized. It is better not to use “matrix of inner products” in other 

places in order prevent confusion. However, we call 𝑽𝑽୘ as “matrix of inner products” 

here. It is important to confirm 𝑽𝑽୘ ≠  𝑽 ∙ 𝑽୘ 

    

𝑽𝑽୘ = ൮

𝑽𝟏

𝑽𝟐

⋮
𝑽𝒏

൲ (𝑽𝟏 𝑽𝟐 ⋯ 𝑽𝒏) =

⎝

⎜
⎛

𝑽𝟏 ∙ 𝑽𝟏
୘ 𝑽𝟏 ∙ 𝑽𝟐

୘

𝑽𝟐 ∙ 𝑽𝟏
୘ 𝑽𝟐 ∙ 𝑽𝟐

୘

⋯ 𝑽𝟏 ∙ 𝑽𝒏
୘

⋯ 𝑽𝟐 ∙ 𝑽𝒏
୘

⋮ ⋮
𝑽𝒏𝑽𝟏

୘ 𝑽𝒏𝑽𝟐
୘

⋱ ⋮
⋯ 𝑽𝒏𝑽𝒏

୘

⎠

⎟
⎞

 



𝑽𝒊 ∙ 𝑽𝒋
୘ is inner product of vector 𝑽𝒊 and 𝑽𝒋 

𝑽𝒊 ∙ 𝑽𝒋
୘ = (𝑣௜ଵ ⋯ 𝑣௜௡) ൭

𝑣௝ଵ

⋮
𝑣௝௡

൱ 

Then we consider matrix of inner product of centralized matrix. 

𝑽ᇱ = 𝑮𝒎𝑽 

From cosine theorem, we can express the relation among vectors as follow.  

𝟐𝑽′௜ ∙ 𝑽′௝ = ⌈𝑽′௜⌉𝟐 + ඃ𝑽′௝ඇ
𝟐

− ඃ𝑽′௜ − 𝑽′௝ඇ
𝟐
 

The last term of the right side is square of distance between arrow heads of both vectors. 

ඃ𝑽′௜ − 𝑽′௝ඇ
𝟐

= 𝑑௜௝
ଶ 

𝟐𝑽′௜ ∙ 𝑽′௝ = ⌈𝑽′௜⌉𝟐 + ඃ𝑽′௝ඇ
𝟐

− 𝑑௜௝
ଶ 

This is relation in each factor of matrix. We express this in the form of matrix. 

𝟐𝑽ᇱ𝑽ᇱ𝑻
= 𝟏𝑛𝟏𝑛୘𝑑𝑖𝑎𝑔(𝑽ᇱ𝑽ᇱ𝑻

) + 𝑑𝑖𝑎𝑔𝑽ᇱ𝑽ᇱ்
𝟏𝑛𝟏𝑛୘ − 𝑫𝟐 

In this, 𝑑𝑖𝑎𝑔A is matrix composed only from diagonal factor of matrix A.  

Expansion of this calculation is as follow. 

𝟐𝑽ᇱ𝑽ᇱ𝑻
= ቌ

1 1 ⋯ 1
1 1 ⋯ 1
⋮
1

⋮
1

⋱
⋯

⋮
1

ቍ

⎝

⎜
⎛

𝑽′ଵ
ଶ

0 ⋯ 0

0 𝑽′ଶ
ଶ

⋯ 0

⋮
0

⋮
0

⋱
⋯

⋮

𝑽′௡
ଶ

⎠

⎟
⎞

+

⎝

⎜
⎛

𝑽′ଵ
ଶ

0 ⋯ 0

0 𝑽′ଶ
ଶ

⋯ 0

⋮
0

⋮
0

⋱
⋯

⋮

𝑽′௡
ଶ

⎠

⎟
⎞

ቌ

1 1 ⋯ 1
1 1 ⋯ 1
⋮
1

⋮
1

⋱
⋯

⋮
1

ቍ − 𝑫𝟐 

We transform left side by 

𝑽ᇱ𝑽ᇱ𝑻
= 𝑮𝒏𝑽(𝑮𝒏𝑽)𝑻 = 𝑮𝒏𝑽𝑽୘𝑮𝒏

୘ = 𝑮𝒏𝑽𝑽୘𝑮𝒏 

𝟐𝑮𝒏𝑽𝑽୘𝑮𝒏 =

⎝

⎜
⎛

𝑽′ଵ
ଶ

𝑽′ଶ
ଶ

⋯ 𝑽′௡
ଶ

𝑽′ଵ
ଶ

𝑽′ଶ
ଶ

⋯ 𝑽′௡
ଶ

⋮

𝑽′ଵ
ଶ

⋮

𝑽′ଶ
ଶ

⋱
⋯

⋮

𝑽′௡
ଶ

⎠

⎟
⎞

+

⎝

⎜
⎛

𝑽′ଵ
ଶ

𝑽′ଵ
ଶ

⋯ 𝑽′ଵ
ଶ

𝑽′ଶ
ଶ

𝑽′ଶ
ଶ

⋯ 𝑽′ଶ
ଶ

⋮

𝑽′௡
ଶ

⋮

𝑽′௡
ଶ

⋱
⋯

⋮

𝑽′௡
ଶ

⎠

⎟
⎞

− 𝑫𝟐 

We multiply 𝑮𝒏 from left and right to both sides. 

𝟐𝑮𝒏
ଶ𝑽𝑽୘𝑮𝒏

ଶ = 𝑮𝒏

⎝

⎜
⎛

𝑽′ଵ
ଶ

𝑽′ଶ
ଶ

⋯ 𝑽′௡
ଶ

𝑽′ଵ
ଶ

𝑽′ଶ
ଶ

⋯ 𝑽′௡
ଶ

⋮

𝑽′ଵ
ଶ

⋮

𝑽′ଶ
ଶ

⋱
⋯

⋮

𝑽′௡
ଶ

⎠

⎟
⎞

𝑮𝒏 + 𝑮𝒏

⎝

⎜
⎛

𝑽′ଵ
ଶ

𝑽′ଵ
ଶ

⋯ 𝑽′ଵ
ଶ

𝑽′ଶ
ଶ

𝑽′ଶ
ଶ

⋯ 𝑽′ଶ
ଶ

⋮

𝑽′௡
ଶ

⋮

𝑽′௡
ଶ

⋱
⋯

⋮

𝑽′௡
ଶ

⎠

⎟
⎞

𝑮𝒏 − 𝑮𝒏𝑫𝟐𝑮𝒏 

From the characteristic of Centralizing matrix. 

𝑮𝒏
ଶ = 𝑮𝒏 

Left size is  

𝑮𝒏
ଶ𝑽𝑽୘𝑮𝒏

ଶ = 𝑮𝒏𝑽𝑽୘𝑮𝒏 

Concerning right side, first and second term are 0. Confirmation is as follow.  



𝑮𝒏 ൮

𝑽′1
2 𝑽′2

2 ⋯ 𝑽′𝑛
2

𝑽′1
2 𝑽′2

2 ⋯ 𝑽′𝑛
2

⋮

𝑽′1
2

⋮

𝑽′2
2

⋱

⋯

⋮

𝑽′𝑛
2

൲ 

When we focus on first column of second vector. First column is lining up of square of the 

same vector as follow. This means that first row of first column of obtainable matrix is 

as follow.   

𝑮𝒏

⎝

⎜
⎛

𝑽′ଵ
ଶ

𝑽′ଵ
ଶ

⋮

𝑽′ଵ
ଶ

⎠

⎟
⎞

= 𝑽′ଵ
ଶ

𝑮𝒏 ቌ

1
1
⋮
1

ቍ = 0 

∵ 𝑮𝒏 ቌ

1
1
⋮
1

ቍ = 0 from character of centralizing matrix 

Similarly, all the other factors in obtainable matrix are 0. Consequently, 

 

𝑮𝒏 ൮

𝑽′1
2 𝑽′2

2 ⋯ 𝑽′𝑛
2

𝑽′1
2 𝑽′2

2 ⋯ 𝑽′𝑛
2

⋮

𝑽′1
2

⋮

𝑽′2
2

⋱

⋯

⋮

𝑽′𝑛
2

൲ = 0 

Similarly, concerning second term, 

⎝

⎜
⎛

𝑽′ଵ
ଶ

𝑽′ଵ
ଶ

⋯ 𝑽′ଵ
ଶ

𝑽′ଶ
ଶ

𝑽′ଶ
ଶ

⋯ 𝑽′ଶ
ଶ

⋮

𝑽′ଵ௡
ଶ

⋮

𝑽′௡
ଶ

⋱
⋯

⋮

𝑽′௡
ଶ

⎠

⎟
⎞

𝑮𝒏 

First row of obtainable matrix is as follow 

൫𝑽ଵ
ଶ 𝑽ଵ

ଶ
⋯ 𝑽ଵ

ଶ൯𝑮𝒏 = 𝑽ଵ
ଶ(1 1 ⋯ 1)𝑮𝒏 = 0 

Similarly, other factors in obtainable matrix is 0, and 

⎝

⎜
⎛

𝑽′ଵ
ଶ

𝑽′ଵ
ଶ

⋯ 𝑽′ଵ
ଶ

𝑽′ଶ
ଶ

𝑽′ଶ
ଶ

⋯ 𝑽′ଶ
ଶ

⋮

𝑽′௡
ଶ

⋮

𝑽′௡
ଶ

⋱
⋯

⋮

𝑽′௡
ଶ

⎠

⎟
⎞

𝑮𝒏 = 0 

Conclusively, 

𝟐𝑮𝒏𝑽𝑽୘𝑮𝒏 = −𝑮𝒏𝑫𝟐𝑮𝒏 

By this transformation, right side distances matrix can be explained by “matrix of inner 

products”.  

We can give position in a space to 𝑫𝟐 which was roving in inanity by folding 𝑮𝒏.  The 

author can give safe refuge to Hebrews. The author is brushing brisk breeze doing good.  

 

We want to know𝑮𝒏𝑽 



𝒀 = 𝑮𝒏𝑽 

𝒀୘ = (𝑮𝒏𝑽)୘ = 𝑽୘𝑮𝒏 

𝒀𝒀୘ = 𝑮𝒏𝑽𝑽୘𝑮𝒏 = −
1

2
𝑮𝒏𝑫𝟐𝑮𝒏 

At first, we calculate, 

𝒁 = −
1

2
𝑮𝒏𝑫𝟐𝑮𝒏 

Then we do spectral decomposition of 𝒁 

𝒁 = 𝑷𝚲𝑷ି𝟏 = 𝑷𝚲
𝟏
𝟐𝚲

𝟏
𝟐𝑷ି𝟏 = 𝑷𝚲

𝟏
𝟐𝚲

𝟏
𝟐𝑷୘ = 𝑷𝚲

𝟏
𝟐 ൬𝑷𝚲

𝟏
𝟐൰

୘

 

−
1

2
𝑮𝒏𝑫𝟐𝑮𝒏 = 𝑷𝚲

𝟏
𝟐 ൬𝑷𝚲

𝟏
𝟐൰

T

 

Then 

𝒀 = 𝑷𝚲
𝟏
𝟐 

Formula 77 

VI-2-2-2. Theoretical discussions about classical MDS 

There is a data X which obtained by observation. Each datum of X is composed from m 

elements. X is expressed by 𝑛 data which has 𝑚 elements as following matrix.  

𝑿 = ൮

𝑥ଵଵ 𝑥ଵଶ

𝑥ଶଵ 𝑥ଶଶ

⋯ 𝑥ଵ௠

⋯ 𝑥ଶ௠

⋮ ⋮
𝑥௡ଵ 𝑥௡ଶ

⋱ ⋮
⋯ 𝑥௡௠

൲ 

It is difficult to understand structure of distribution of all data and relationship among 

data, when a lot of elements is existing.  We want to summarize the data combining 

several elements to reduce the number of elements from 𝑚  to 𝑙 (𝑙 < 𝑚) . This is 

motivation of MDS and PCA. Most extreme case we want reduce the number to only one 

(𝑙 = 1).  

y෤ଵ = 𝑎ଵ𝑥ଵଵ + 𝑎ଶ𝑥ଵଶ + ⋯ + 𝑎௡𝑥ଵ௡ 

As matrix calculation 

𝒀෩ = 𝑿𝑨୘ 

𝑨 = (𝑎ଵ 𝑎ଶ
⋯ 𝑎௡) 

In the case 𝑙 > 1, 

𝑨 = ൭

𝑎ଵଵ

⋮
𝑎௟ଵ

𝑎ଵଶ

⋮
𝑎௟ଶ

⋯

𝑎ଵ௡

⋮
𝑎௟௡

൱ 

 



𝒀෩ = 𝑿𝑨୘ = ൭
𝑦෤ଵଵ ⋯ 𝑦෤ଵ௟

⋮ ⋱ ⋮
𝑦෤௡ଵ ⋯ 𝑦෤௡௟

൱ 

When number of data（𝑛）is larger than number of elements (𝑝), the simultaneous 

equation is irregular, and data include error generally. For this reason, we optimize 𝑨 

by minimizing differences between observed data and expected values.  

ฮ𝒀 − 𝒀෩ฮ 

ฮ𝒀 − 𝒀෩ฮ  is norm expressing the magnitude of difference between two vectors. We 

consider Euclidian norm in orthogonal space. 

ฮ𝒀 − 𝒀෩ฮ
ଶ

= ൫ඃ𝒀 − 𝒀෩ඇ൯
ଶ
 

In the MDS which express the data in plotting data in 2-dimensinal flat is summarizing 

the all elements to two representative elements.  In this meaning, MDS is a kind of 

approximation by least square method. However, the data are given as form of the 

difference of among elements. Thus, we have to make “matrix of inner products after 

centralization of the given data as follow. 

 𝒁 = −
1

2
𝑮𝒏𝑫𝟐𝑮𝒏 

Then, we implement diagonalization of this matrix in order to make form of 𝑷𝜦
𝟏

𝟐𝜦
𝟏

𝟐𝑷୘.。 

𝑷𝜦
𝟏
𝟐𝜦

𝟏
𝟐𝑷୘ = ൬𝑷𝜦

𝟏
𝟐൰ ൬𝑷𝜦

𝟏
𝟐൰

୘

 

Right side is form of “matrix of inner products” 𝑿𝑿୘, when we consider  

𝑿 = 𝑷𝜦
𝟏
𝟐 

In singular value decomposition, we made variance-covariance matrix 𝑿୘𝑿 and “matrix 

of inner products” 𝑿𝑿୘, and then we diagonalize both matrixes.   

 

𝑿𝑿୘ = 𝑷𝜦𝑷୘ 

𝑿୘𝑿 = 𝑸𝜦𝑸୘ 

𝑷 = 𝑼 

𝑸 = 𝑽 

𝑿 = 𝑼𝜮𝑽୘ = 𝑼𝜦
ଵ
ଶ𝜦

ଵ
ଶ𝑽୘ 

In MDS, we are not given vector data which has direction. We cannot make variance -

covariance matrix and matrix of inner products directly.  

However, we can give direction to the data by centralization, and we can diagonalize 

𝑮𝒏𝑫𝟐𝑮𝒏 considering 𝑿 = 𝑮𝒏𝑫 

𝑿𝑿୘ = 𝑷𝜦𝑷୘ 



When we consider that “matrix of inner products” is reverse of variance-covariance 

matrix, we can say that MDS is reverse of PCA. We are expecting that components which 

have higher contribution rate are concentrated in 2 or 3 directions in PCA and MDS and 

make 2-dimensional plot or 3-dimensional plot. Most interesting function of MDS is 

plotting data of which dimension we do not know on 2 or 3dimensional space. However, 

components do not always concentrate to seldom direction. Analyzers who know that   

MDS is selecting several representative axes from orthogonal axes can understand 

importance of confirmation of cumulative contribution ratio in analysis. The author 

personally interested in drawing plotts using miner importance axis. We may discover 

new findings from minor relation.  PCA and MDS are methods to see phenomena from 

various viewing points. Knowing mathematical meaning of MDS, you can use this tool 

for unique and interesting findings.   

 

VI-2-2-3. Several examples of calculation of MDS. 

The author perform calculation of MDS of simple examples in this paragraph aiming 

deepening the calculation and meaning of MDS and PCA. 

 

Example 1 (equilateral triangle) 

We allocate of vertexes of equilateral triangle which length of sides is 1 in a space. It is 

easy to understand direction of viewing point, because, three points make triangle on a 

flat naturally. We confirm whether the triangle can be drawn on 2-dimensional flat from 

the information of distances among vertexes.    

Round robin square of distance matrix is as follow 

𝑫𝟐 = ൭
0 1 1
1 0 1
1 1 0

൱ 

Centralization 

𝑮𝒏𝑫ଶ𝑮𝒏 =

⎝

⎜
⎜
⎛

1 −
1

3
−

1

3
−

1

3

−
1

3
1 −

1

3
−

1

3

−
1

3
−

1

3
1 −

1

3⎠

⎟
⎟
⎞

൭
0 1 1
1 0 1
1 1 0

൱

⎝

⎜
⎜
⎛

1 −
1

3
−

1

3
−

1

3

−
1

3
1 −

1

3
−

1

3

−
1

3
−

1

3
1 −

1

3⎠

⎟
⎟
⎞

 

⎝

⎜
⎜
⎛

2

3
−

1

3
−

1

3

−
1

3

2

3
−

1

3

−
1

3
−

1

3

2

3 ⎠

⎟
⎟
⎞

൭
0 1 1
1 0 1
1 1 0

൱

⎝

⎜
⎜
⎛

2

3
−

1

3
−

1

3

−
1

3

2

3
−

1

3

−
1

3
−

1

3

2

3 ⎠

⎟
⎟
⎞

 



⎝

⎜
⎜
⎛

−
2

3

1

3

1

3
1

3
−

2

3

1

3
1

3

1

3
−

2

3⎠

⎟
⎟
⎞

⎝

⎜
⎜
⎛

2

3
−

1

3
−

1

3

−
1

3

2

3
−

1

3

−
1

3
−

1

3

2

3 ⎠

⎟
⎟
⎞

 

⎝

⎜
⎜
⎛

−
6

9

3

9

3

9
3

9
−

6

9

3

9
3

9

3

9
−

6

9⎠

⎟
⎟
⎞

=
1

3
൭

−2 1 1
1 −2 1
1 1 −2

൱ 

We diagonalize ൭
−2 1 1
1 −2 1
1 1 −2

൱. 

We solve eigen equation to obtain eigenvalue. 

。 

อ
−2 − 𝜆 1 1

1 −2 − 𝜆 1
1 1 −2 − 𝜆

อ = 0 

−(2 + 𝜆)ଷ + 2 + 3(2 + 𝜆) 

−(𝜆ଶ + 4𝜆 + 4)(2 + 𝜆) + 2 + 3(2 + 𝜆) 

−𝜆ଷ − 4𝜆ଶ − 4𝜆 − 2𝜆ଶ − 8𝜆 − 8 + 2 + 6 + 3𝜆 

−𝜆ଷ − 6𝜆ଶ − 12𝜆 − 8 + 2 + 6 + 3𝜆 = 0 

−𝜆ଷ − 6𝜆ଶ − 9𝜆 = 0 

𝜆(𝜆 + 3)ଶ = 0 

𝜆 = 0, 𝜆 = −3 

We calculate eigenvector belonging to 𝜆 = 0. 

൭
2 −1 −1

−1 2 −1
−1 −1 2

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = 0 ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ 

2𝑥ଵ − 𝑥ଶ − 𝑥ଷ = 0 

−𝑥ଵ + 2𝑥ଶ − 𝑥ଷ = 0 

−𝑥ଵ−𝑥ଶ + 2𝑥ଷ = 0 

From all equation we obtain 

𝑥ଵ = 𝑥ଶ = 𝑥ଷ 

We select following vector as most simple eigen vector. 

൭
1
1
1

൱ 

Then we calculate eigenvector belonging to 𝜆 = −3. 



൭
2 −1 −1

−1 2 −1
−1 −1 2

൱ ൭

𝑥ଵ

𝑥ଶ

𝑥ଷ

൱ = −3𝜆 = 0 

−2𝑥ଵ + 𝑥ଶ + 𝑥ଷ = −3𝑥ଵ 

𝑥ଵ − 2𝑥ଶ + 𝑥ଷ = −3𝑥ଶ 

𝑥ଵ + 𝑥ଶ − 3𝑥ଷ = −3𝑥ଷ 

  From all equation 

𝑥ଵ + 𝑥ଶ + 𝑥ଷ = 0 

We select following equation. 

൭
2

−1
−1

൱ 

 

We make the other eigen vector belonging to 𝜆 = −3 using orthogonality. The vector 

should be orthogonal to two vectors obtained in upper calculation.  

(𝑥ଵ 𝑥ଶ 𝑥ଷ) ൭
1
1
1

൱ = 0 

(𝑥ଵ 𝑥ଶ 𝑥ଷ) ൭
2

−1
−1

൱ = 0 

𝑥ଵ + 𝑥ଶ + 𝑥ଷ = 0 

2𝑥ଵ − 𝑥ଶ − 𝑥ଷ = 0 

We solve this simultaneous equation and obtain 

𝑥ଵ = 0, 𝑥ଶ = −𝑥ଷ 

We select following vector as simplest eigenvector. 

൭
0
1

−1
൱ 

From upper equation we could obtain diagonalizing matrix of ൭
−2 1 1
1 −2 1
1 1 −2

൱ as follow. 

𝑷 = ൭
−2 0 1
1 1 1
1 −1 1

൱ 

It is not necessary, though the author transform this to unit vector for future convenience. 

𝑷 =

⎝

⎜
⎜
⎜
⎛

√2

√3
0

1

√3

−
1

√6

1

√2

1

√3

−
1

√6
−

1

√2

1

√3⎠

⎟
⎟
⎟
⎞

 

𝑷 is diagonalization matrix of symmetric matrix. Consequently,  

𝑷ି𝟏 = 𝑷୘ 



𝜦 = ൮

𝜆ଵ 0
0 𝜆ଶ

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝜆௡

൲ = ൭
−3 0 0
0 −3 0
0 0 0

൱ 

|𝜆ଵ| ≥ |𝜆ଶ| ≥ ⋯ ≥ |𝜆௡| 

Using these matrixes, we can diagonalize 𝑮𝒏𝑫ଶ𝑮𝒏 as follow. 

𝑮𝒏𝑫ଶ𝑮𝒏 = 𝑷𝜦𝑷୘ 

1

3
൭

−2 1 1
1 −2 1
1 1 −2

൱ =
1

3

⎝

⎜
⎜
⎜
⎛

√2

√3
0

1

√3

−
1

√6

1

√2

1

√3

−
1

√6
−

1

√2

1

√3⎠

⎟
⎟
⎟
⎞

൭
−3 0 0
0 −3 0
0 0 0

൱

⎝

⎜
⎜
⎜
⎛

√2

√3
−

1

√6
−

1

√6

0
1

√2
−

1

√2
1

√3

1

√3

1

√3 ⎠

⎟
⎟
⎟
⎞

 

=
1

3

⎝

⎜
⎜
⎜
⎛

√2

√3
0

1

√3

−
1

√6

1

√2

1

√3

−
1

√6
−

1

√2

1

√3⎠

⎟
⎟
⎟
⎞

൭
−3 0 0
0 −3 0
0 0 0

൱

⎝

⎜
⎜
⎜
⎛

√2

√3
−

1

√6
−

1

√6

0
1

√2
−

1

√2
1

√3

1

√3

1

√3 ⎠

⎟
⎟
⎟
⎞

 

⎝

⎜
⎜
⎜
⎛

√2

√3
0

1

√3

−
1

√6

1

√2

1

√3

−
1

√6
−

1

√2

1

√3⎠

⎟
⎟
⎟
⎞

൭
−1 0 0
0 −1 0
0 0 0

൱

⎝

⎜
⎜
⎜
⎛

√2

√3
−

1

√6
−

1

√6

0
1

√2
−

1

√2
1

√3

1

√3

1

√3 ⎠

⎟
⎟
⎟
⎞

 

𝒁 =
𝑮𝒏𝑫ଶ𝑮𝒏

−𝟐
 

=
1

−2

⎝

⎜
⎜
⎜
⎛

√2

√3
0

1

√3

−
1

√6

1

√2

1

√3

−
1

√6
−

1

√2

1

√3⎠

⎟
⎟
⎟
⎞

൭
−1 0 0
0 −1 0
0 0 0

൱

⎝

⎜
⎜
⎜
⎛

√2

√3
−

1

√6
−

1

√6

0
1

√2
−

1

√2
1

√3

1

√3

1

√3 ⎠

⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎛

√2

√3
0

1

√3

−
1

√6

1

√2

1

√3

−
1

√6
−

1

√2

1

√3⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎛

1

2
0 0

0
1

2
0

0 0 0⎠

⎟
⎞

⎝

⎜
⎜
⎜
⎛

√2

√3
−

1

√6
−

1

√6

0
1

√2
−

1

√2
1

√3

1

√3

1

√3 ⎠

⎟
⎟
⎟
⎞

 

We transform this to the form of𝑷𝜦
𝟏

𝟐𝜦
𝟏

𝟐𝑷୘. 



𝑷𝜦
𝟏
𝟐𝜦

𝟏
𝟐𝑷୘ =

⎝

⎜
⎜
⎜
⎛

√2

√3
0

1

√3

−
1

√6

1

√2

1

√3

−
1

√6
−

1

√2

1

√3⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎛

1

√2
0 0

0
1

√2
0

0 0 0⎠

⎟
⎞

⎝

⎜
⎛

1

√2
0 0

0
1

√2
0

0 0 0⎠

⎟
⎞

⎝

⎜
⎜
⎜
⎛

√2

√3
−

1

√6
−

1

√6

0
1

√2
−

1

√2
1

√3

1

√3

1

√3 ⎠

⎟
⎟
⎟
⎞

 

This is result means eigenvector

⎝

⎜
⎛

ଵ

√ଷ
ଵ

√ଷ
ଵ

√ଷ⎠

⎟
⎞

 has no expansion to its direction. We can neglect 

this axis.   

𝑷𝜦
𝟏
𝟐𝜦

𝟏
𝟐𝑷୘ =

⎝

⎜
⎜
⎜
⎛

√2

√3
0

−
1

√6

1

√2

−
1

√6
−

1

√2⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎛

1

√2
0

0
1

√2⎠

⎟
⎞

⎝

⎜
⎛

1

√2
0

0
1

√2⎠

⎟
⎞

⎝

⎜
⎛

√2

√3
−

1

√6
−

1

√6

0
1

√2
−

1

√2⎠

⎟
⎞

 

𝑷𝜦
𝟏
𝟐 =

⎝

⎜
⎜
⎜
⎛

√2

√3
0

−
1

√6

1

√2

−
1

√6
−

1

√2⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎛

1

√2
0

0
1

√2⎠

⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

1

√3
0

−
1

2√3

1

2

−
1

2√3
−

1

2⎠

⎟
⎟
⎟
⎞

 

We can obtain the point of three vertexes as follow. 

൬
1

√3
0൰ , ൬−

1

2√3

1

2
൰ , ൬−

1

2√3
−

1

2
൰ 

We can plot them as following figure.  

 

                            

                Fig. 83. Two-dimensional plot of 3 points 

For the confirmation, we calculate the distances. 



ฬ൬
1

√3
0൰ − ൬−

1

2√3

1

2
൰ฬ = ඨቆ

√3

2
ቇ

ଶ

+ ൬−
1

2
൰

ଶ

= 1 

ฬ൬
1

√3
0൰ − ൬−

1

2√3
−

1

2
൰ฬ = ඨቆ

√3

2
ቇ

ଶ

+ ൬
1

2
൰

ଶ

= 1 

ฬ൬−
1

2√3

1

2
൰ − ൬−

1

2√3
−

1

2
൰ฬ = ඥ(0)ଶ + (1)ଶ = 1 

We could obtain equilateral triangle without any loss of information.   

As a result of selection of ൭
2

−1
−1

൱ as one of eigenvector, a vertex exists on vertical axis. 

We can understand the three points form a flat from the result that one of the eigenvalue 

is 0.  

 

Example 2 (quadrate) 

Several cynics may say that it is trivial 3 points make a flat. We try to calculate the case 

of quadrate of which side is 1 in length.   

Distance matrix is as follow. 

𝑫 =

⎝

⎜
⎛

0 1
1 0

√2 1

1 √2

√2 1

1 √2

0 1
1 0

⎠

⎟
⎞

 

Square distance matrix is as follow. 

𝑫𝟐 = ቌ

0 1
1 0

2 1
1 2

2 1
1 2

0 1
1 0

ቍ 

Centralization 

𝑮𝒏𝑫ଶ𝑮𝒏 =

⎝

⎜
⎜
⎜
⎜
⎛

3

4
−

1

4

−
1

4

3

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

3

4
−

1

4

−
1

4

3

4 ⎠

⎟
⎟
⎟
⎟
⎞

ቌ

0 1
1 0

2 1
1 2

2 1
1 2

0 1
1 0

ቍ

⎝

⎜
⎜
⎜
⎜
⎛

3

4
−

1

4

−
1

4

3

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

3

4
−

1

4

−
1

4

3

4 ⎠

⎟
⎟
⎟
⎟
⎞

 



= ቌ

−1 0
0 −1

1 0
0 1

1 0
0 1

−1 0
0 −1

ቍ

⎝

⎜
⎜
⎜
⎜
⎛

3

4
−

1

4

−
1

4

3

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

3

4
−

1

4

−
1

4

3

4 ⎠

⎟
⎟
⎟
⎟
⎞

 

= ቌ

−1 0
0 −1

1 0
0 1

1 0
0 1

−1 0
0 −1

ቍ 

Calculation to obtain eigenvalues from eigen equation. 

ቮ

−1 − 𝜆 0
0 −1 − 𝜆

1     0
0     1

1     0
0     1

−1 − 𝜆 0
0 −1 − 𝜆

ቮ = 0 

(𝜆 + 1)ସ − 2(𝜆 + 1)ଶ + 1 = 0 

((𝜆 + 1)ଶ − 1)ଶ = 0 

൫𝜆(𝜆 + 2)൯
ଶ

= 0 

𝜆 = 0 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑟𝑜𝑜𝑡), 𝜆 = −2 (𝑚𝑢𝑡𝑖𝑝𝑙𝑒 𝑟𝑜𝑜𝑡) 

Calculation to obtain eigenvector belonging to eigenvalue 𝜆 = 0. 

ቌ

−1 0
0 −1

1 0
0 1

1 0
0 1

−1 0
0 −1

ቍ ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ = 0 ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ 

−𝑥ଵ + 𝑥ଷ = 0 

𝑥ଶ − 𝑥ସ = 0 

From this 

𝑥ଵ = 𝑥ଷ, 𝑥ଶ = 𝑥ସ 

We select following vector as simplest eigenvector. 

ቌ

1
1
1
1

ቍ 

Calculation to obtain eigenvector belonging to eigenvalue 𝜆 = −2. 

ቌ

−1 0
0 −1

1 0
0 1

1 0
0 1

−1 0
0 −1

ቍ ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ = −2 ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ 

𝑥ଵ + 𝑥ଷ = 0 

𝑥ଶ + 𝑥ସ = 0 

From this 



𝑥ଵ = −𝑥ଷ, 𝑥ଶ = −𝑥ସ 

We select following vector as simplest eigenvector. 

ቌ

1
1

−1
−1

ቍ 

Calculation of the other eigenvector belonging to eigenvalue𝜆 = 0. 

We use condition for orthogonality to upper two vectors. Following inner products should 

be 0. 

(𝑥ଵ 𝑥ଶ
𝑥ଷ 𝑥ସ) ቌ

1
1
1
1

ቍ = 0 

(𝑥ଵ 𝑥ଶ
𝑥ଷ 𝑥ସ) ቌ

1
1

−1
−1

ቍ = 0 

𝑥ଵ + 𝑥ଶ + 𝑥ଷ + 𝑥ସ = 0 

𝑥ଵ + 𝑥ଶ − 𝑥ଷ − 𝑥ସ = 0 

𝑥ଵ = −𝑥ଶ, 𝑥ଷ = −𝑥ସ 

We select following vector as simplest eigen vector. 

ቌ

1
−1
1

−1

ቍ 

Calculation of the other eigenvalue belonging to eigen value 𝜆 = −2. We use condition 

for orthogonality to upper three vectors. Following inner products should be 0. 

(𝑥ଵ 𝑥ଶ
𝑥ଷ 𝑥ସ) ቌ

1
1
1
1

ቍ = 0 

(𝑥ଵ 𝑥ଶ
𝑥ଷ 𝑥ସ) ቌ

1
1

−1
−1

ቍ = 0 

(𝑥ଵ 𝑥ଶ
𝑥ଷ 𝑥ସ) ቌ

1
−1
1

−1

ቍ = 0 

𝑥ଵ + 𝑥ଶ + 𝑥ଷ + 𝑥ସ = 0 

𝑥ଵ + 𝑥ଶ − 𝑥ଷ − 𝑥ସ = 0 

𝑥ଵ − 𝑥ଶ + 𝑥ଷ − 𝑥ସ = 0 

𝑥ଵ = −𝑥ଶ, 𝑥ଷ = −𝑥ସ, 𝑥ଵ = 𝑥ସ, 𝑥ଶ = 𝑥ଷ 



We select following vector as simplest eigenvector. 

ቌ

1
−1
−1
1

ቍ 

We can obtain following matrix which diagonalize 𝑮𝒏𝑫ଶ𝑮𝒏. 

𝑷 = ቌ

1  1
1  −1

1 1
1 −1

−1 −1
−1 1

1 1
1 −1

ቍ 

𝑮𝒏𝑫ଶ𝑮𝒏 = ቌ

−1 0
0 −1

1 0
0 1

1 0
0 1

−1 0
0 −1

ቍ 

For future convenience, we make orthogonalizing matrix to unit vector.  

𝑷 =

⎝

⎜
⎜
⎜
⎜
⎛

1

2
 
1

2
1

2
 −

1

2

1

2

1

2
1

2
−

1

2

−
1

2
−

1

2

−
1

2

1

2

1

2

1

2
1

2
−

1

2⎠

⎟
⎟
⎟
⎟
⎞

 

𝑷ିଵ = 𝑷୘ 

𝜦 = ቌ

−2 0
0 −2

0 0
0 0

0   0
0   0

0 0
0 0

ቍ 

Diagonalization 

ቌ

−1 0
0 −1

1 0
0 1

1 0
0 1

−1 0
0 −1

ቍ = 𝑷𝜦𝑷୘ 

Using this 

𝑮𝒏𝑫ଶ𝑮𝒏 = ቌ

−1 0
0 −1

1 0
0 1

1 0
0 1

−1 0
0 −1

ቍ 

=

⎝

⎜
⎜
⎜
⎜
⎛

1

2
 
1

2
1

2
 −

1

2

1

2

1

2
1

2
−

1

2

−
1

2
−

1

2

−
1

2

1

2

1

2

1

2
1

2
−

1

2⎠

⎟
⎟
⎟
⎟
⎞

ቌ

−2 0
0 −2

0 0
0 0

0   0
0   0

0 0
0 0

ቍ

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
 −

1

2

−
1

2
−

1

2

−
1

2

1

2
1

2
 
1

2
1

2
−

1

2

1

2
  
1

2
1

2
−

1

2 ⎠

⎟
⎟
⎟
⎟
⎞

 



𝒁 =
𝑮𝒏𝑫ଶ𝑮𝒏

−2
 

=
1

−2

⎝

⎜
⎜
⎜
⎜
⎛

1

2
 
1

2
1

2
 −

1

2

1

2

1

2
1

2
−

1

2

−
1

2
−

1

2

−
1

2

1

2

1

2

1

2
1

2
−

1

2⎠

⎟
⎟
⎟
⎟
⎞

ቌ

−2 0
0 −2

0 0
0 0

0   0
0   0

0 0
0 0

ቍ

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
 −

1

2

−
1

2
−

1

2

−
1

2

1

2
1

2
 
1

2
1

2
−

1

2

1

2
  
1

2
1

2
−

1

2 ⎠

⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎛

1

2
 
1

2
1

2
 −

1

2

1

2

1

2
1

2
−

1

2

−
1

2
−

1

2

−
1

2

1

2

1

2

1

2
1

2
−

1

2⎠

⎟
⎟
⎟
⎟
⎞

ቌ

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

ቍ

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
 −

1

2

−
1

2
−

1

2

−
1

2

1

2
1

2
 
1

2
1

2
−

1

2

1

2
  

1

2
1

2
−

1

2 ⎠

⎟
⎟
⎟
⎟
⎞

 

Transform to the form of 𝑷𝜦
𝟏

𝟐𝜦
𝟏

𝟐𝑷୘. 

𝑷𝜦
𝟏
𝟐𝜦

𝟏
𝟐𝑷୘ =

⎝

⎜
⎜
⎜
⎜
⎛

1

2
 
1

2
1

2
 −

1

2

1

2

1

2
1

2
−

1

2

−
1

2
−

1

2

−
1

2

1

2

1

2

1

2
1

2
−

1

2⎠

⎟
⎟
⎟
⎟
⎞

ቌ

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

ቍ ቌ

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

ቍ

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
 −

1

2

−
1

2
−

1

2

−
1

2

1

2
1

2
 
1

2
1

2
−

1

2

1

2
  
1

2
1

2
−

1

2 ⎠

⎟
⎟
⎟
⎟
⎞

 

𝑷𝜦
𝟏
𝟐𝜦

𝟏
𝟐𝑷୘ =

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
−

1

2

−
1

2

−
1

2

−
1

2
1

2 ⎠

⎟
⎟
⎟
⎟
⎞

ቀ
1 0
0 1

ቁ ቀ
1 0
0 1

ቁ ൮

1

2

1

2
−

1

2
−

1

2
1

2
−

1

2
−

1

2

1

2

൲ 

What we need is 𝑷𝜦
𝟏

𝟐. 

𝑷𝜦
𝟏
𝟐 =

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
−

1

2

−
1

2

−
1

2

−
1

2
1

2 ⎠

⎟
⎟
⎟
⎟
⎞

ቀ
1 0
0 1

ቁ =

⎝

⎜
⎜
⎜
⎜
⎛

1

2

1

2
1

2
−

1

2

−
1

2

−
1

2

−
1

2
1

2 ⎠

⎟
⎟
⎟
⎟
⎞

 

൬
1

2

1

2
൰ , ൬

1

2
−

1

2
൰ , ൬−

1

2
−

1

2
൰ , ൬−

1

2

1

2
൰  



                        

                      Fig.84. Two-dimensional plot of 4 vertexes 

                                

These vertexes form quadrate of which center is origin. We could understand that the es 

are distributing in 2-dimensinal space from the calculation of eigenvalues in which there 

are two vectors from four are λ = 0.  

 

Example 3 (tetrahedron) 

As an example of 3-dimensional data, we calculate tetrahedron of which lengths of sides 

are 1.   

𝑫 = ቌ

0 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

ቍ 

𝑫𝟐 = ቌ

0 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

ቍ 

Centralization. 

𝑮𝒏𝑫ଶ𝑮𝒏 =

⎝

⎜
⎜
⎜
⎜
⎛

3

4
−

1

4

−
1

4

3

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

3

4
−

1

4

−
1

4

3

4 ⎠

⎟
⎟
⎟
⎟
⎞

ቌ

0 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

ቍ

⎝

⎜
⎜
⎜
⎜
⎛

3

4
−

1

4

−
1

4

3

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

3

4
−

1

4

−
1

4

3

4 ⎠

⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎛

−
3

4

1

4
1

4
−

3

4

1

4
  

1

4
1

4
  

1

4
1

4
  

1

4
1

4
  

1

4

−
3

4

1

4
1

4
−

3

4⎠

⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎛

3

4
−

1

4

−
1

4

3

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

−
1

4
−

1

4

3

4
−

1

4

−
1

4

3

4 ⎠

⎟
⎟
⎟
⎟
⎞

 



=

⎝

⎜
⎜
⎜
⎜
⎛

−
3

4

1

4
1

4
−

3

4

1

4
  
1

4
1

4
  
1

4
1

4
  

1

4
1

4
  

1

4

−
3

4

1

4
1

4
−

3

4⎠

⎟
⎟
⎟
⎟
⎞

=
1

4
ቌ

−3 1
1 −3

1  1
1   1

1   1
1   1

−3 1
1 −3

ቍ 

Concerning ቌ

−3 1
1 −3

1  1
1   1

1   1
1   1

−3 1
1 −3

ቍ, we calculate eigenvalue. 

ቮ

−3 − 𝜆 0
0 −3 − 𝜆

1     0
0     1

1     0
0     1

−3 − 𝜆 0
0 −3 − 𝜆

ቮ = 0 

(𝜆 + 3)ସ − 2(𝜆 + 3)ଶ + 1 = 0 

((𝜆 + 3)ଶ − 1)ଶ = 0 

(𝜆 + 3)ଶ = 1 

(𝜆 + 3) = ±1 

𝜆 = −4 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑟𝑜𝑜𝑡), 𝜆 = −2 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑟𝑜𝑜𝑡) 

We calculate eigenvectors belonging to eigen value 𝜆 = −4. 

ቌ

−3 1
1 −3

1  1
1   1

1   1
1   1

−3 1
1 −3

ቍ ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ = −4 ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ 

−3𝑥ଵ + 𝑥ଶ + 𝑥ଷ + 𝑥ସ = −4𝑥ଵ 

𝑥ଵ − 3𝑥ଶ + 𝑥ଷ + 𝑥ସ = −4𝑥ଶ 

𝑥ଵ + 𝑥ଶ − 3𝑥ଷ + 𝑥ସ = −4𝑥ଷ 

𝑥ଵ + 𝑥ଶ + 𝑥ଷ − 3𝑥ସ = −4𝑥ସ 

From all equations 

𝑥ଵ + 𝑥ଶ + 𝑥ଷ + 𝑥ସ = 0 

Simplest vector satisfying upper equation is as follow. 

ቌ

1
−1
0
0

ቍ 

Simplest orthogonal vector to upper vector satisfying the equation is as follow. 

ቌ

0
0
1

−1

ቍ 

We select these vectors as eigenvectors.  



𝑽ଵ = ቌ

1
−1
0
0

ቍ, 𝑽ଶ = ቌ

0
0
1

−1

ቍ 

Calculation for eigenvectors belonging to eigenvalue 𝜆 = −2. 

ቌ

−3 1
1 −3

1  1
1   1

1   1
1   1

−3 1
1 1

ቍ ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ = −2 ቌ

𝑥ଵ

𝑥ଶ
𝑥ଷ

𝑥ସ

ቍ 

−3𝑥ଵ + 𝑥ଶ + 𝑥ଷ + 𝑥ସ = −2𝑥ଵ 

𝑥ଵ − 3𝑥ଶ + 𝑥ଷ + 𝑥ସ = −2𝑥ଶ 

𝑥ଵ + 𝑥ଶ − 3𝑥ଷ + 𝑥ସ = −2𝑥ଷ 

𝑥ଵ + 𝑥ଶ + 𝑥ଷ − 3𝑥ସ = −2𝑥ସ 

 

𝑥ଵ = 𝑥ଶ + 𝑥ଷ + 𝑥ସ i 

𝑥ଶ = 𝑥ଵ + 𝑥ଷ + 𝑥ସ ii 

      𝑥ଷ = 𝑥ଵ + 𝑥ଶ + 𝑥ସ  iii 

      𝑥ସ = 𝑥ଵ + 𝑥ଶ + 𝑥ଷ  iv 

i − ii                    𝑥ଵ − 𝑥ଶ = 𝑥ଶ − 𝑥ଵ    

𝑥ଵ = 𝑥ଶ 

Similarly from iii―iv, 

𝑥ଷ = 𝑥ସ 

From ii+iii, 

            

𝑥ଵ = −𝑥ସ 

From i+iv, 

𝑥ଶ = −𝑥ଷ 

We select following vectors as simplest vector satisfying the condition. 

𝑉ଷ = ቌ

1
1

−1
−1

ቍ , 𝑉ଷ′ = ቌ

−1
−1
1
1

ቍ  

Space 𝑽ଵ,- 𝑽ଶ- 𝑽ଷ and Space 𝑽ଵ,- 𝑽ଶ- 𝑽ଷ′ are in the relation of mirror image, and  𝑽ଷ 

and 𝑽ଷ′ are oppositely oriented and is existing on the same line.  We can combine 𝑽ଷ′ 

to 𝑽ଷ.  

   

𝑽ଵ = ቌ

1
−1
0
0

ቍ , 𝑽ଶ = ቌ

0
0
1

−1

ቍ , 𝑽ଷ = ቌ

1
1

−1
−1

ቍ 



We transform them into unit vectors 

⎝

⎜
⎜
⎛

1

√2

−
1

√2
0
0 ⎠

⎟
⎟
⎞

,

⎝

⎜
⎜
⎛

0
0
1

√2

−
1

√2⎠

⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛

1

2
1

2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎞

 

Conclusively, the diagonalizing matrix of  ቌ

−3 1
1 −3

1  1
1   1

1   1
1   1

−3 1
1 −3

ቍis as follow. 

𝑷 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

√2
0

1

2

−
1

√2
0

1

2

0
0

1

√2

−
1

√2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

The eigenvalue of third eigenvector is (−2) + (−2) = −4. 

𝜦 = ൭
−4 0 0
0 −4 0
0 0 −4

൱ 

ቌ

−3 1
1 −3

1  1
1   1

1   1
1   1

−3 1
1 −3

ቍ = 𝑷𝜦𝑷𝑻 

Using them. 

𝑮𝒏𝑫ଶ𝑮𝒏 =
1

4
ቌ

−3 1
1 −3

1  1
1   1

1   1
1   1

−3 1
1 −3

ቍ 

=
1

4

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

√2
0

1

2

−
1

√2
0

1

2

0
0

1

√2

−
1

√2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

൭
−4 0 0
0 −4 0
0 0 −4

൱

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

√2
0

1

2

−
1

√2
0

1

2

0
0

1

√2

−
1

√2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

்

 

 



=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

√2
0

1

2

−
1

√2
0

1

2

0
0

1

√2

−
1

√2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

൭
−1 0 0
0 −1 0
0 0 −1

൱

⎝

⎜
⎜
⎜
⎛

1

√2
−

1

√2
0 0

0 0
1

√2
−

1

√2
1

2

1

2
−

1

2
−

1

2 ⎠

⎟
⎟
⎟
⎞

 

 𝒁 =
𝑮𝒏𝑫మ𝑮𝒏

ିଶ
 

=
1

−2

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

√2
0

1

2

−
1

√2
0

1

2

0
0

1

√2

−
1

√2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

൭
−1 0 0
0 −1 0
0 0 −1

൱

⎝

⎜
⎜
⎜
⎛

1

√2
−

1

√2
0 0

0 0
1

√2
−

1

√2
1

2

1

2
−

1

2
−

1

2 ⎠

⎟
⎟
⎟
⎞

 

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

√2
0

1

2

−
1

√2
0

1

2

0
0

1

√2

−
1

√2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎛

1

2
0 0

0
1

2
0

0 0
1

2⎠

⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√2
−

1

√2
0 0

0 0
1

√2
−

1

√2
1

2

1

2
−

1

2
−

1

2 ⎠

⎟
⎟
⎟
⎞

 

We trans form this to the form of 𝑷𝜦
𝟏

𝟐𝜦
𝟏

𝟐𝑷୘. 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

√2
0

1

2

−
1

√2
0

1

2

0
0

1

√2

−
1

√2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√2
0 0

0
1

√2
0

0 0
1

√2⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√2
0 0

0
1

√2
0

0 0
1

√2⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√2
−

1

√2
0 0

0 0
1

√2
−

1

√2
1

2

1

2
−

1

2
−

1

2 ⎠

⎟
⎟
⎟
⎞

 

From this we can obtain 𝑷𝜦
𝟏

𝟐. 



𝑷𝜦
𝟏
𝟐 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

√2
0

1

2

−
1

√2
0

1

2

0
0

1

√2

−
1

√2

−
1

2

−
1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

1

√2
0 0

0
1

√2
0

0 0
1

√2⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

2
0

1

2√2

−
1

2
0

1

2√2

0
0

1

2

−
1

2

−
1

2√2

−
1

2√2⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

From this we can confirm vertexes of tetrahedron are existing in 3-dimensional space, 

and the coordinates of vertexes are as follow. 

A: ൬
1

2
 0

1

2√2
൰ 

B: ൬−
1

2
 0

1

2√2
൰  

C: ൬0
1

2
−

1

2√2
൰ 

D: ൬0 −
1

2
−

1

2√2
൰ 

We confirm the distances among the points 

|A − B| = ඩቆ൬
1

2
൰ − ൬−

1

2
൰ቇ

ଶ

+ ൫(0) − (0)൯
ଶ

+ ൭൬
1

2√2
൰ − ൬

1

2√2
൰൱

ଶ

 

= ට൫(1)൯
ଶ

+ 0 + 0 = 1 

|A − C| = ඩቆ൬
1

2
൰ − (0)ቇ

ଶ

+ ቆ(0) − ൬
1

2
൰ቇ

ଶ

+ ൭൬
1

2√2
൰ − ൬−

1

2√2
൰൱

ଶ

 

= ඨ൬
1

2
൰

ଶ

+ ൬
1

2
൰

ଶ

+ ൬
1

√2
൰

ଶ

= ඨ
1

4
+

1

4
+

1

2
= 1 

|A − D| = ඩቆ൬
1

2
൰ − (0)ቇ

ଶ

+ ቆ(0) − ൬−
1

2
൰ቇ

ଶ

+ ൭൬
1

2√2
൰ − ൬−

1

2√2
൰൱

ଶ

 

= ඨ൬
1

2
൰

ଶ

+ ൬
1

2
൰

ଶ

+ ൬
1

√2
൰

ଶ

= ඨ
1

4
+

1

4
+

1

2
= 1 



|B − C| = ඩቆ൬−
1

2
൰ − (0)ቇ

ଶ

+ ቆ(0) − ൬
1

2
൰ቇ

ଶ

+ ൭൬−
1

2√2
൰ − ൬−

1

2√2
൰൱

ଶ

 

= ඨ൬
1

2
൰

ଶ

+ ൬
1

2
൰

ଶ

+ ൬
1

√2
൰

ଶ

= ඨ
1

4
+

1

4
+

1

2
= 1 

|B − D| = ඩቆ൬−
1

2
൰ − (0)ቇ

ଶ

+ ቆ(0) − ൬−
1

2
൰ቇ

ଶ

+ ൭൬
1

2√2
൰ − ൬

1

2√2
൰൱

ଶ

 

= ඨ൬
1

2
൰

ଶ

+ ൬
1

2
൰

ଶ

+ ൬
1

√2
൰

ଶ

= ඨ
1

4
+

1

4
+

1

2
= 1 

|C − D| = ඩ൫(0) − (0)൯
ଶ

+ ቆ൬
1

2
൰ − ൬−

1

2
൰ቇ

ଶ

+ ൭൬−
1

2√2
൰ − ൬−

1

2√2
൰൱

ଶ

 

= ඥ0ଶ + (1)ଶ + 0ଶ = 1 

Following is map of the pints on 𝑥ଵ − 𝑥ଶ flat. 

                        
      Fig. 85. Two-dimensional plot of vertex of tetrahedron 

No one can directly understand only from the two-dimensional plots that the figure is an 

image of tetrahedron. 

Stereoscopic image of the points of vertexes is as follows. 



                       
   Fig.86. Cubic diagram of tetrahedron and viewing direction projection view 

 

The flat image is image looking from the direction of 𝑥ଷ axis. We calculate cumulative 

contribution ratio by first and second axis from diagonal matrix of eigenvalues. 

𝜦 =

⎝

⎜
⎜
⎛

1

2
0 0

0
1

2
0

0 0
1

2⎠

⎟
⎟
⎞

 

Cumulative contribution ratio by first and second axis is 

1
2

+
1
2

1
2

+
1
2

+
1
2

=
2

3
 

Flat image can explain onlyଶ

ଷ
 of the distribution of data. However, excepting diagonal 

lines in the flat image, distances between the vertexes  are the same. Some may say 

that the flat image is explaining necessary information. Evaluation of adequacy and 

availability  of the map changes depending on the purpose of analysis. What is most 

important is to make various flat images from different direction checking the 

cumulative contribution ratio. We cannot identify only from one map whether the flat 

image is representing quadrate or tetrahedron. Purpose of MDS is observation of multi-

dimensional distribution of data. It is not drawing of a flat image. 

 

 

VI-2-2-4.Additional discussion (relation between MDS and PCA) 

We can draw a regular tetrahedron in example 3. The table of each vertex is as shown in 

table 48. 

Table 48. Components of the vertexes 



Table 48. coordinate of each vertex 

 𝑥ଵ 𝑥ଶ 𝑥ଷ 

A 1

2
 

0 1

2√2
 

B 
−

1

2
 

0 1

2√2
 

C 0 1

2
 −

1

2√2
 

D 0 
−

1

2
 −

1

2√2
 

 

When we are given this table as data at first, we consider implementation of PCA to 

observe multi-dimensional distribution of data. We can understand multi-dimensional 

distribution by drawing stereoscopic image from the data. It is meaningless performance 

to do PCA from this data practically. However, the author tries PCA for understanding 

of the relation between MDS and PCA.  

At first, we calculate variance-covariance matrix.  

Variance in 𝑥ଵ: ቀ
ଵ

ଶ
ቁ

ଶ
+ ቀ−

ଵ

ଶ
ቁ

ଶ
+ (0)ଶ + (0)ଶ =

ଵ

ଶ
 

Variance in 𝑥ଶ: (0)ଶ + (0)ଶ + ቀ
ଵ

ଶ
ቁ

ଶ
+ ቀ−

ଵ

ଶ
ቁ

ଶ
=

ଵ

ଶ
 

Variance in 𝑥ଷ: ቀ
ଵ

ଶ√ଶ
ቁ

ଶ
+ ቀ

ଵ

ଶ√ଶ
ቁ

ଶ
+ ቀ−

ଵ

ଶ√ଶ
ቁ

ଶ
+ ቀ−

ଵ

ଶ√ଶ
ቁ

ଶ
=

ଵ

ଶ
 

Covariance between 𝑥ଵand 𝑥ଶ: ቀ
ଵ

ଶ
ቁ (0) + ቀ−

ଵ

ଶ
ቁ (0) + (0) ቀ

ଵ

ଶ
ቁ + (0) ቀ−

ଵ

ଶ
ቁ = 0 

Covariance between 𝑥ଵand 𝑥ଷ: ቀ
ଵ

ଶ
ቁ ቀ−

ଵ

ଶ√ଶ
ቁ + ቀ−

ଵ

ଶ
ቁ ቀ−

ଵ

ଶ√ଶ
ቁ + (0) ቀ−

ଵ

ଶ√ଶ
ቁ + (0) ቀ−

ଵ

ଶ√ଶ
ቁ = 0 

Covariance between 𝑥ଶand 𝑥ଷ: (0) ቀ
ଵ

ଶ√ଶ
ቁ + (0) ቀ

ଵ

ଶ√ଶ
ቁ + ቀ

ଵ

ଶ
ቁ ቀ−

ଵ

ଶ√ଶ
ቁ + ቀ−

ଵ

ଶ
ቁ ቀ−

ଵ

ଶ√ଶ
ቁ = 0 

Variance-covariance matrix is 

⎝

⎜
⎜
⎛

1

2
0 0

0
1

2
0

0 0
1

2⎠

⎟
⎟
⎞

 

This is already diagonalized. We trans form this as follow. 



1

2
൭

1 0 0
0 1 0
0 0 1

൱ 

The matrix is unit matrix. So, when we multiply this to the vector of each vertexs, we 

decrease original figure in size by ଵ

ଶ
 keeping relative relation of original figure.  

Aᇱ: ൬
1

2
 0

1

2√2
൰

1

2
൭

1 0 0
0 1 0
0 0 1

൱ =
1

2
൬

1

2
 0

1

2√2
൰ 

Bᇱ: ൬−
1

2
 0

1

2√2
൰

1

2
൭

1 0 0
0 1 0
0 0 1

൱ =
1

2
൬−

1

2
 0

1

2√2
൰ 

Cᇱ: ൬0
1

2
−

1

2√2
൰

1

2
൭

1 0 0
0 1 0
0 0 1

൱ =
1

2
൬0

1

2
−

1

2√2
൰ 

Dᇱ: ൬0 −
1

2
−

1

2√2
൰

1

2
൭

1 0 0
0 1 0
0 0 1

൱ =
1

2
൬0 −

1

2
−

1

2√2
൰ 

This procedure is only changing of the name of axes from 𝑥ଵ component 𝑥ଶ component 

and component 𝑥ଷ to first principle component, second principle component and third 

principle component. We consider component which has small eigenvalue as error in 

PCA, and we assume that the eigenvalue of the component is 0.  The eigenvalues are 

the same in this case. We can neglect any component.  We can obtain the vertex of 

vertex on the flat between first and second component by following calculation. 

Aᇱ = ൬
1

2
 0

1

2√2
൰ ൭

1 0
0 1
0 0

൱ = ൬
1

2
0൰ 

This is natural consequence, though we can confirm the difference between MDS and 

PCA is difference in given data. The merit of MDS is construction of data structure only 

from distance data. Scientists who are thinking MDS as only a method for categorization 

of data using two or three-dimensional map sometimes waste important and useful 

information provided by MDS.  It is important to consider multi-dimensional structure 

of data distribution checking maps from various direction with cumulative contribution 

ratio. Mapping is only a method to summarize the distribution.  

 

The difference between MDS and PCA is difference in form of given dataset, and we can 

get similar result. This means that we can evaluate similarity among individual data 

from given values of various measurement item calculating distance in multi-

dimensional space after PCA. In this meaning, MDS is completely inverse procedure of 

PCA. However, PCA has several advantages to MDS. Firstly, we can categorize the data 

using result of PCA. As an example, we sample all benthic organisms in a quadrate and 

record the number of each species in each sampling site as measurement item. We can 

apply PCA to the dataset. And we can categorize species or sampling site using distance 



among each data on multidimensional space as anti-similarity. Secondary, we can 

discuss the relation between distribution of each species or sampling site with other 

factors such as environment factors or seasonality or social background. This is so called 

correspondence analysis if we measure such background data simultaneously. There are 

several historically different correspondence analyses. All correspondence analysis is 

considered an application of PCA now a days. We already learned a kind of 

correspondence analysis in VI-2-1-4.  However, there is a unique function in MDS which 

cannot be achieve by PCA. Sometimes MDS provide least expected findings. MDS does 

not need prier information and makes structure only by difference. For correspondence 

analysis by PCA we have to include measurement item relating to the phenomena using 

prior information. MDS can make draw structure of data distribution without clear cause 

and result relationship. This sometime provides new information.       

In the case of coastal ecological survey, we can implement PCA directly from variance-

covariance matrix or correlation matrix, when individual number of each species in each 

sampling site is a measurement item. Another idea is to make round robin distance table 

from anti-similarities of species composition. And then we implement MDS. There 

various similarity coefficients, namely Jaccard coefficient, Simpson coefficient, Dice 

coefficient and so on in ecological studies. Commonly we use 1 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 

as distance. After making distant data among sampling site or among species from 

similarity coefficient, we can perform MDS.  In such case, we need to select MDS or 

PCA. The author cannot make any recommendation mathematically for solution of this 

question. We consider that each species has same weight at the starting point in PCA, 

and we obtain the distance from correlation angle of vector）as the result. On the contrary, 

we start the analysis from the distances among points and we obtain the relative position 

of each point in MDS. We have to discuss the adequacy of treating each species in the 

same weight.  Each species has each characteristic in distribution. Some species are 

rare species and existence of an individual of such species has important meaning. Some 

species are distribute making patch in a small area.  Number of individuals in a patch 

is huge. Appearance ratio of other species became negligible small, when we express the 

appearance of species in actual count of individuals.  This decrease of adequacy and 

reliability of analysis.  There are several mitigation methods of this issue such as 

making similarity coefficient using binary data or using of logarithm of individual 

number and so on. However, there is no complete adaptive measure to all cases. This 

issue can sometimes be solved by PCA after standardization of data by standard 

deviation or PCA by correlation matrix, however it is not useful in all cases. In the 

impression of the author, most of the researcher in ecology prefer to use MDS than PCA. 



We should think these issues adaptively depending on the experience and case studies. 

The author has not rich experiences to use MDS and PCA. The author is expecting 

readers to refer previous works in each research field.  

 

VI-2-2-4. Non-metric multidimensional scaling. 

Upper explanations are for classic MDS of metric DMS. MDS is developing recently using 

computer machine power. There are various MDS particularly in application of MDS to 

non-linear data. Interest of MDS is exist in allocation of data which we do not know the 

elements of data in multi-dimensional space from the difference. The author thinks that 

there are large possibilities of MDS in the analytical method to qualitative data and 

nominal scale data. The author expect application of MDS to analysis of all difference 

data. The point for the application is that the differences should be expressed as distance. 

This means that we cannot apply this method to data in which distance from A to B is 

different to distance from B to A (time distance of ship in stream between A and B is a 

typical example) or sum of distance A to B and B to C is not shorter than A to C. We need 

devices to express the distance. It reaches limit of capacity of the author to explain all of 

them. Readers who need method of non-metric MDS, please refer other text books and 

relating papers.  

 

 


